Skip to main content

Advertisement

Log in

Extensions of the vector-valued Hausdorff–Young inequalities

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we study the vector-valued analogues of several inequalities for the Fourier transform. In particular, we consider the inequalities of Hausdorff–Young, Hardy–Littlewood, Paley, Pitt, Bochkarev and Zygmund. The Pitt inequalities include the Hausdorff–Young and Hardy–Littlewood inequalities and state that the Fourier transform is bounded from \(L^p({\mathbb {R}}^d,|\cdot |^{\beta p})\) into \(L^q({\mathbb {R}}^d,|\cdot |^{-\gamma q})\) under certain condition on \(p,q,\beta \) and \(\gamma \). Vector-valued analogues are derived under geometric conditions on the underlying Banach space such as Fourier type and related geometric properties. Similar results are derived for \({\mathbb {T}}^d\) and \({\mathbb {Z}}^d\) by a transference argument. We prove sharpness of our results by providing elementary examples on \(\ell ^p\)-spaces. Moreover, connections with Rademacher (co)type are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, vol. 96 of Monographs in Mathematics, 2nd edn. Birkhäuser/Springer Basel AG, Basel (2011)

  2. Albiac, F., Kalton, N.J.: Topics in Banach space theory, vol. 233 of Graduate Texts in Mathematics. Springer, New York (2006)

  3. Beckner, W.: Inequalities in Fourier analysis. Ann. Math. 102, 159–182 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123(6), 1897–1905 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Beckner, W.: Pitt’s inequality with sharp convolution estimates. Proc. Am. Math. Soc. 136(5), 1871–1885 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beckner, W.: Pitt’s inequality and the fractional Laplacian: sharp error estimates. Forum Math. 24(1), 177–209 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benedetto, J., Heinig, H.: Weighted Fourier inequalities: new proofs and generalizations. J. Fourier Anal. Appl. 9(1), 1–37 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benedetto, J., Heinig, H., Johnson, R.: Fourier inequalities with \(A_p\)-weights. In: General inequalities, 5 (Oberwolfach, 1986), vol. 80 of Internat. Schriftenreihe Numer. Math., pp. 217–232. Birkhäuser, Basel (1987)

  9. Bu, S., Kim, J.-M.: Operator-valued Fourier multiplier theorems on Triebel spaces. Acta Math. Sci. Ser. B (Engl. Ed.) 25(4), 599–609 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Barza, S., Kolyada, V., Soria, J.: Sharp constants related to the triangle inequality in Lorentz spaces. Trans. Am. Math. Soc. 361(10), 5555–5574 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bochkarev, S.: Hausdorff–Young–Riesz theorem in Lorentz spaces and multiplicative inequalities. Proc. Steklov Inst. Math. 219, 96–107 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Bochkarev, S.: Estimates for the Fourier coefficients of functions in Lorentz spaces. Dokl. Akad. Nauk 360(6), 730–733 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Bourgain, J.: Vector-valued Hausdorff–Young inequalities and applications. In: Geometric aspects of functional analysis (1986/87), vol. 1317 of Lecture Notes in Math., pp. 239–249. Springer, Berlin (1988)

  14. Blasco, O., Pelczynski, A.: Theorem of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces. Trans. Am. Math. Soc. 323, 335–369 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bennett, C., Rudnick, K.: On Lorentz-Zygmund spaces. Dissertationes Math. 175, 67 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Bennett, C., Sharpley, R.: Interpolation of operators, vol. 129 of Pure and Applied Mathematics. Academic Press Inc, Boston (1988)

  17. Calderón, A.: Spaces between \({L}^1\) and \({L}^\infty \) and the theorem of Marcinkiewicz. Studia Math. 26, 273–299 (1966)

    MathSciNet  MATH  Google Scholar 

  18. Cobos, F., Fernández-Cabrera, L., Kühn, T., Ullrich, T.: On an extreme class of real interpolation spaces. J. Funct. Anal. 256(7), 2321–2366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carro, M., Raposo, J., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Am. Math. Soc. 187, 128 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Cwikel, M., Sagher, Y.: An extension of Fourier type to quasi-Banach spaces. In: Function spaces and applications, vol. 1302 of Lecture Notes in Math., pp. 171–176. Springer, Berlin (1988)

  21. Chill, R., Tomilov, Y.: Stability of \(C_0\)-semigroups and geometry of Banach spaces. Math. Proc. Camb. Philos. Soc. 135(3), 493–511 (2003)

    Article  MATH  Google Scholar 

  22. De Carli, L., Gorbachev, D., Tikhonov, S.: Pitt inequalities and restriction theorems for the Fourier transform. Rev. Mat. Iberoam. 33(3), 789–808 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators, vol. 43 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)

  24. Edmunds, D., Evans, W.: Hardy operators, function spaces and embeddings. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  25. Eilertsen, S.: On weighted fractional integral inequalities. J. Funct. Anal. 185(1), 342–366 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Evans, W., Opic, B.: Real interpolation with logarithmic functors and reiteration. Can. J. Math. 52, 920–960 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Edmunds, D., Opic, B.: Limiting variants of Krasnosel’skiĭ’s compact interpolation theorem. J. Funct. Anal. 266, 3265–3285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Evans, W., Opic, B., Pick, L.: Real interpolation with logarithmic functors. J. Inequal. Appl. 7, 187–269 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Garcia-Cuerva, J., Kazarian, K., Kolyada, V.: Paley type inequalities for orthogonal series with vector-valued coefficients. Acta Math. Hungar. 90(1–2), 151–183 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. García-Cuerva, J., Kazaryan, K., Kolyada, V., Torrea, J.: The Hausdorff–Young inequality with vector-valued coefficients and applications. Uspekhi Mat. Nauk 53(3(321)), 3–84 (1998)

    MathSciNet  Google Scholar 

  31. García-Cuerva, J., Torrea, J., Kazarian, K.: On the Fourier type of Banach lattices. In: Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994), vol. 175 of Lecture Notes in Pure and Appl. Math., pp. 169–179. Dekker, New York (1996)

  32. Gorbachev, D., Ivanov, V., Tikhonov, S.: Pitt’s inequalities and uncertainty principle for generalized Fourier transform. Int. Math. Res. Not. 23, 7179–7200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grafakos, L.: Modern Fourier analysis, vol. 250 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2009)

  34. Girardi, M., Weis, L.: Operator-valued Fourier multiplier theorems on \(L_p(X)\) and geometry of Banach spaces. J. Funct. Anal. 204(2), 320–354 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Heinig, H.: Weighted norm inequalities for classes of operators. Indiana Univ. Math. J. 33(4), 573–582 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Herz, C.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283–324 (1968)

    MathSciNet  MATH  Google Scholar 

  37. Herbst, I.: Spectral theory of the operator \((p^{2}+m^{2})^{1/2}-Ze^{2}/r\). Commun. Math. Phys. 53(3), 285–294 (1977)

    Article  MATH  Google Scholar 

  38. Hinrichs, A.: On the type constants with respect to systems of characters of a compact abelian group. Studia Math. 118(3), 231–243 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hytönen, T., Lacey, M.: Pointwise convergence of vector-valued Fourier series. Math. Ann. 357(4), 1329–1361 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hytönen, T., Neerven, J.v., Veraar, M., Weis, L.: Analysis in Banach Spaces. Vol. I: Martingales and Littlewood–Paley Theory, vol. 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete, no. (3). Springer, New York (2016)

  41. Hytönen, T., Neerven, J.v., Veraar, M., Weis, L.: Analysis in Banach Spaces. Vol. II: Probabilistic methods and operator theory, vol. 67 of Ergebnisse der Mathematik und ihrer Grenzgebiete, no. (3). Springer, New York (2017)

  42. Hytönen, T.: Fourier embeddings and Mihlin-type multiplier theorems. Math. Nachr. 274(275), 74–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Köthe, G.: Topological vector spaces. I. Translated from the German by D.J.H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band, vol. 159. Springer, New York (1969)

  44. Kolmogorov, A.: Une série de Fourier–Lebesque divergente presque partout. Fund. Math. 4, 324–328 (1923)

    Article  Google Scholar 

  45. König, H.: On the Fourier-coefficients of vector-valued functions. Math. Nachr. 152, 215–227 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kwapień, S.: Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Math. 44, 583–595 (1972) (Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI)

  47. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. II, vol. 97 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin, New York (1979) (Function spaces)

  48. Liflyand, E., Tikhonov, S.: Two-sided weighted Fourier inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(2), 341–362 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Lindemulder, N., Veraar, M.: The heat equation with rough boundary conditions and holomorphic functional calculus. J. Differ. Equations 269(7), 5832–5899 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Opic, B., Kufner, A.: Hardy-type inequalities. Longman Sci & Tech, Harlow (1990)

    MATH  Google Scholar 

  51. O’Neil, R.: Convolution operators and \(L(p,\, q)\) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  52. Opic, B., Pick, L.: On generalized Lorentz–Zygmund spaces. Math. Inequal. Appl. 2, 391–467 (1999)

    MathSciNet  MATH  Google Scholar 

  53. Peetre, J.: Sur la transformation de Fourier des fonctions à valeurs vectorielles. Rend. Sem. Mat. Univ. Padova 42, 15–26 (1969)

    MathSciNet  MATH  Google Scholar 

  54. Pietsch, A.: History of Banach spaces and linear operators. Birkhäuser Boston Inc, Boston (2007)

    MATH  Google Scholar 

  55. Pisier, G.: Holomorphic semigroups and the geometry of Banach spaces. Ann. Math. 115(2), 375–392 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  56. Pisier, G.: Probabilistic methods in the geometry of Banach spaces. In: Probability and analysis (Varenna, 1985), vol. 1206 of Lecture Notes in Math., pp. 167–241. Springer, Berlin (1986)

  57. Pisier, G.: Martingales in Banach spaces, vol. 155 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016)

  58. Pitt, H.: Theorems on Fourier series and power series. Duke Math. J. 3(4), 747–755 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  59. Parcet, J., Soria, F., Xu, Q.: On the growth of vector-valued Fourier series. Indiana Univ. Math. J. 62(6), 1765–1784 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Pietsch, A., Wenzel, J.: Orthonormal systems and Banach space geometry, volume 70 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  61. Rubio de Francia, J.: Martingale and integral transforms of Banach space valued functions. In: Probability and Banach spaces (Zaragoza, 1985), vol. 1221 of Lecture Notes in Math., pp. 195–222. Springer, Berlin (1986)

  62. Rozendaal, J., Veraar, M.: Fourier multipliers theorems involving type and cotype. J. Fourier Anal. Appl. 24(2), 583–619 (2018)

  63. Rozendaal, J., Veraar, M.: Stability theory for semigroups using \((L^p, L^q)\) Fourier multipliers. J. Funct. Anal. 275(10), 2845–2894 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  64. Sinnamon, G.: The Fourier transform in weighted Lorentz spaces. Publ. Math. 47, 3–29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. Stein, E.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  66. Strömberg, J.-O., Wheeden, R.: Weighted norm estimates for the Fourier transform with a pair of weights. Trans. Am. Math. Soc. 318(1), 355–372 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  67. Suárez, J., Weis, L.: Interpolation of Banach spaces by the \(\gamma \)-method. In: Methods in Banach space theory, vol. 337 of London Math. Soc. Lecture Note Ser., pp. 293–306. Cambridge University Press, Cambridge (2006)

  68. Triebel, H.: Interpolation theory, function spaces, differential operators, second edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  69. Weis, L., Wrobel, V.: Asymptotic behavior of \(C_0\)-semigroups in Banach spaces. Proc. Am. Math. Soc. 124(12), 3663–3671 (1996)

    Article  MATH  Google Scholar 

  70. Yafaev, D.: Sharp constants in the Hardy–Rellich inequalities. J. Funct. Anal. 168(1), 121–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  71. Zygmund, A.: Trigonometric Series, vol. II, 2nd edn. Cambridge University Press, New York (1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Dominguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Oscar Dominguez is supported in part by MTM2017-84058-P (AEI/FEDER, UE). Mark Veraar is supported by the VIDI subsidy 639.032.427 of the Netherlands Organisation for Scientific Research (NWO). Part of the work was done during the visit of the first author to the Isaac Newton Institute for Mathematical Sciences, Cambridge, EPSCR Grant no EP/K032208/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominguez, O., Veraar, M. Extensions of the vector-valued Hausdorff–Young inequalities. Math. Z. 299, 373–425 (2021). https://doi.org/10.1007/s00209-020-02675-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02675-6

Keywords

Mathematics Subject Classification

Navigation