Skip to main content
Log in

Equivariant Iwasawa theory for elliptic curves

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We discuss abelian equivariant Iwasawa theory for elliptic curves over \({\mathbb {Q}}\) at good supersingular primes and non-anomalous good ordinary primes. Using Kobayashi’s method, we construct equivariant Coleman maps, which send the Beilinson–Kato element to the equivariant p-adic L-functions. Then we propose equivariant main conjectures and, under certain assumptions, prove one divisibility via Euler system machinery. As an application, we prove a case of a conjecture of Mazur–Tate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amice, Y., Vélu, J.: Distributions \(p\)-adiques associées aux séries de Hecke. Astérisque (24–25), 119–131 (1975)

  2. Burns, D., Greither, C.: Equivariant Weierstrass preparation and values of \(L\)-functions at negative integers. Doc. Math. (Extra Vol.), 157–185 (2003) (Kazuya Kato’s fiftieth birthday)

  3. Burns, D., Sakamoto, R., Sano, T.: On the theory of higher rank Euler, Kolyvagin and Stark systems, II (2018). arXiv:1805.08448

  4. Burns, D., Sakamoto, R., Sano, T.: On the theory of higher rank Euler, Kolyvagin and Stark systems, III: applications (2019). arXiv:1902.07002

  5. Burns, D., Sano, T.: On the theory of higher rank Euler, Kolyvagin and Stark systems. Int. Math. Res. Not. (2019)

  6. Coates, J., Sujatha, R.: Fine Selmer groups of elliptic curves over \(p\)-adic Lie extensions. Math. Ann. 331(4), 809–839 (2005)

    Article  MathSciNet  Google Scholar 

  7. Delbourgo, D.: Elliptic curves and big Galois representations. London Mathematical Society Lecture Note Series, vol. 356. Cambridge University Press, Cambridge (2008)

  8. Greenberg, R.: Iwasawa theory for elliptic curves. In: Arithmetic Theory of Elliptic Curves (Cetraro, 1997), Lecture Notes in Math., vol. 1716, pp. 51–144. Springer, Berlin (1999)

  9. Greenberg, R.: On the structure of certain Galois cohomology groups. Doc. Math. (Extra Vol.), 335–391 (2006)

  10. Greenberg, R.: Iwasawa theory, projective modules, and modular representations. Mem. Am. Math. Soc. 211(992), vi+185 (2011)

  11. Greenberg, R.: On the structure of Selmer groups. In; Elliptic Curves, Modular Forms and Iwasawa Theory, Springer Proc. Math. Stat., vol. 188, pp. 225–252. Springer, Cham (2016)

  12. Greenberg, R., Vatsal, V.: On the Iwasawa invariants of elliptic curves. Invent. Math. 142(1), 17–63 (2000)

    Article  MathSciNet  Google Scholar 

  13. Greither, C., Popescu, C.D.: An equivariant main conjecture in Iwasawa theory and applications. J. Algebraic Geom. 24(4), 629–692 (2015)

    Article  MathSciNet  Google Scholar 

  14. Honda, T.: Formal groups and zeta-functions. Osaka J. Math. 5, 199–213 (1968)

    MathSciNet  MATH  Google Scholar 

  15. Honda, T.: On the theory of commutative formal groups. J. Math. Soc. Japan 22, 213–246 (1970)

    Article  MathSciNet  Google Scholar 

  16. Iovita, A., Pollack, R.: Iwasawa theory of elliptic curves at supersingular primes over \({\mathbb{Z}}_p\)-extensions of number fields. J. Reine Angew. Math. 598, 71–103 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Kataoka, T.: Stark systems and equivariant main conjectures (preprint)

  18. Kataoka, T.: Fitting invariants in equivariant Iwasawa theory. Development of Iwasawa Theory—the Centennial of K. Iwasawa’s Birth (2020)

  19. Kato, K.: \(p\)-adic Hodge theory and values of zeta functions of modular forms. Astérisque 295, ix, 117–290 (2004) (Cohomologies p-adiques et applications arithmétiques. III)

  20. Kim, C.-H., Kurihara, M.: On the refined conjectures on Fitting ideals of Selmer groups of elliptic curves with supersingular reduction. Int. Math. Res. Not. (2019)

  21. Kim, M.: Projectivity and Selmer groups in the non-ordinary case. Thesis (Ph.D.)–Boston University. ProQuest LLC, Ann Arbor (2011)

  22. Kitajima, T., Otsuki, R.: On the plus and the minus Selmer groups for elliptic curves at supersingular primes. Tokyo J. Math. 41(1), 273–303 (2018)

    Article  MathSciNet  Google Scholar 

  23. Kobayashi, S.: Iwasawa theory for elliptic curves at supersingular primes. Invent. Math. 152(1), 1–36 (2003)

    Article  MathSciNet  Google Scholar 

  24. Kurihara, M.: On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I. Invent. Math. 149(1), 195–224 (2002)

    Article  MathSciNet  Google Scholar 

  25. Kurihara, M.: Iwasawa theory and Fitting ideals. J. Reine Angew. Math. 561, 39–86 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Kurihara, M.: The structure of Selmer groups of elliptic curves and modular symbols. In: Iwasawa Theory 2012, Contrib. Math. Comput. Sci., vol. 7, pp. 317–356. Springer, Heidelberg (2014)

  27. Manin, J.I.: Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR Ser. Mat. 36, 19–66 (1972)

    MathSciNet  MATH  Google Scholar 

  28. Mazur, B., Rubin, K.: Kolyvagin systems. Mem. Am. Math. Soc. 168(799), viii+96 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Mazur, B., Tate, J.: Refined conjectures of the “Birch and Swinnerton-Dyer type”. Duke Math. J. 54(2), 711–750 (1987)

    Article  MathSciNet  Google Scholar 

  30. Mazur, B., Tate, J., Teitelbaum, J.: On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84(1), 1–48 (1986)

    Article  MathSciNet  Google Scholar 

  31. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, 2nd edn. Springer, Berlin (2008)

  32. Ochi, Y., Venjakob, O.: On the structure of Selmer groups over \(p\)-adic Lie extensions. J. Algebraic Geom. 11(3), 547–580 (2002)

    Article  MathSciNet  Google Scholar 

  33. Ota, K.: Kato’s Euler system and the Mazur-Tate refined conjecture of BSD type. Am. J. Math. 140(2), 495–542 (2018)

    Article  MathSciNet  Google Scholar 

  34. Perrin-Riou, B.: Théorie d’Iwasawa des représentations \(p\)-adiques sur un corps local. Invent. Math. 115(1), 81–161 (1994) (With an appendix by Jean-Marc Fontaine)

  35. Pollack, R.: On the \(p\)-adic \(L\)-function of a modular form at a supersingular prime. Duke Math. J. 118(3), 523–558 (2003)

    Article  MathSciNet  Google Scholar 

  36. Ritter, J., Weiss, A.: Toward equivariant Iwasawa theory. Manuscr. Math. 109(2), 131–146 (2002)

    Article  MathSciNet  Google Scholar 

  37. Rohrlich, D.E.: On \(L\)-functions of elliptic curves and cyclotomic towers. Invent. Math. 75(3), 409–423 (1984)

    Article  MathSciNet  Google Scholar 

  38. Rubin, K.: Euler systems and modular elliptic curves. In: Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., vol. 254, pp. 351–367. Cambridge Univ. Press, Cambridge (1998)

  39. Rubin, K.: Euler Systems, Annals of Mathematics Studies, vol. 147. Hermann Weyl Lectures. The Institute for Advanced Study. Princeton University Press, Princeton (2000)

  40. Sakamoto, R.: Stark systems over Gorenstein local rings. Algebra Number Theory 12(10), 2295–2326 (2018)

    Article  MathSciNet  Google Scholar 

  41. Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972)

    Article  MathSciNet  Google Scholar 

  42. Silverman, J.H.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 106, 2nd edn. Springer, Dordrecht (2009)

  43. Sprung, F.: Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures. J. Number Theory 132(7), 1483–1506 (2012)

    Article  MathSciNet  Google Scholar 

  44. Sprung, F.: On pairs of \(p\)-adic \(L\)-functions for weight-two modular forms. Algebra Number Theory 11(4), 885–928 (2017)

    Article  MathSciNet  Google Scholar 

  45. Višik, M.M.: Nonarchimedean measures associated with Dirichlet series. Mat. Sb. (N.S.) 99 141(2), 248–260, 296 (1976)

  46. Wuthrich, C.: On the integrality of modular symbols and Kato’s Euler system for elliptic curves. Doc. Math. 19, 381–402 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is based on my thesis. I would like to express my deepest gratitude to Takeshi Tsuji for his constant support throughout my research activities. I also thank Chan-Ho Kim, Takahiro Kitajima, Masato Kurihara, Rei Otsuki, and Ryotaro Sakamoto. They answered my questions and also gave suggestions. I am also grateful to anonymous referees for their careful reading. This research was supported by JSPS KAKENHI Grant Number 17J04650, and by the Program for Leading Graduate Schools (FMSP) at the University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takenori Kataoka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Properties of Fitting ideals

Appendix: Properties of Fitting ideals

In this appendix, we collect auxiliary propositions about Fitting ideals, using the results in [18].

Let G be a finite abelian group and put \(\Lambda = {\mathbb {Z}}_p[[T]], {\mathcal {R}}= {\mathbb {Z}}_p[G][[T]]\). We denote by \({\mathcal {M}}\) the category of finitely generated torsion \({\mathcal {R}}\)-modules, where torsionness means being torsion as a \(\Lambda \)-module. Let \({\mathcal {P}}\) be the subcategory of \({\mathcal {M}}\) consisting of module with \(\mathrm{pd}_{{\mathcal {R}}} \le 1\). Let \({\mathcal {C}}\) be the subcategory of \({\mathcal {M}}\) consisting of modules which does not have nonzero finite submodules. It is well-known (e.g. [31, Proposition (5.3.19)(i)]) that a finitely generated \({\mathcal {R}}\)-module X does not contain a non-trivial finite submodule if and only if \(\mathrm{pd}_{\Lambda }(X) \le 1\). Therefore \({\mathcal {P}}\subset {\mathcal {C}}\), meaning that any object of \({\mathcal {P}}\) is an object of \({\mathcal {C}}\).

Definition A.1

Let \(\Omega \) be a commutative monoid.

  1. (1)

    A map \({\mathcal {F}}: {\mathcal {M}}\rightarrow \Omega \) is called a Fitting invariant if the following conditions hold:

    • If \(P \in {\mathcal {P}}\), then \({\mathcal {F}}(P) \in \Omega \) is invertible.

    • If \(P \in {\mathcal {P}}\) and \(X, X' \in {\mathcal {M}}\) fit into an exact sequence \(0 \rightarrow X' \rightarrow X \rightarrow P \rightarrow 0\), then \({\mathcal {F}}(X) = {\mathcal {F}}(P){\mathcal {F}}(X')\).

  2. (2)

    A map \({\mathcal {F}}: {\mathcal {C}}\rightarrow \Omega \) is called a quasi-Fitting invariant if the following conditions hold:

    • If \(P \in {\mathcal {P}}\), then \({\mathcal {F}}(P) \in \Omega \) is invertible.

    • If \(P \in {\mathcal {P}}\) and \(X, X' \in {\mathcal {C}}\) fit into an exact sequence \(0 \rightarrow X' \rightarrow X \rightarrow P \rightarrow 0\), then \({\mathcal {F}}(X) = {\mathcal {F}}(P){\mathcal {F}}(X')\).

    • If \(P \in {\mathcal {P}}\) and \(X, X' \in {\mathcal {C}}\) fit into an exact sequence \(0 \rightarrow P \rightarrow X \rightarrow X' \rightarrow 0\), then \({\mathcal {F}}(X) = {\mathcal {F}}(P){\mathcal {F}}(X')\).

This definition of Fitting invariants (resp. quasi-Fitting invariants) is given in [18, Definition 2.4] (resp. [18, Definition 3.16]). A fundamental example is the following.

Proposition A.2

Let \(\Omega \) be the monoid of fractional ideals of \({\mathcal {R}}\) and we put \({\mathcal {F}}(X) = {{\,\mathrm{Fitt}\,}}_{{\mathcal {R}}}(X)\), the Fitting ideal of X. Then \({\mathcal {F}}: {\mathcal {M}}\rightarrow \Omega \) is a Fitting invariant. Moreover, the restriction \({\mathcal {F}}|_{{\mathcal {C}}}: {\mathcal {C}}\rightarrow \Omega \) is a quasi-Fitting invariant.

Proof

The first assertion is proved in [18, Proposition 2.7]. Then the second follows, since [18, Proposition 3.17] proves that, in our present situation, any Fitting invariant gives rise to a quasi-Fitting invariant by restriction to \({\mathcal {C}}\). \(\square \)

Next we state the definition of shifts of (quasi-)Fitting invariants, introduced in [18].

Theorem A.3

([18, Theorem 2.6]) Let \({\mathcal {F}}: {\mathcal {M}}\rightarrow \Omega \) be a Fitting invariant. For \(X \in {\mathcal {M}}\) and \(n \ge 0\), the following \({\mathcal {F}}^{[n]}(X) \in \Omega \) is well-defined. Take an exact sequence \(0 \rightarrow Y \rightarrow P_1 \rightarrow \dots \rightarrow P_n \rightarrow X \rightarrow 0\) in \({\mathcal {M}}\) with \(P_i \in {\mathcal {P}}\) for \(1 \le i \le n\). Then define

$$\begin{aligned} {\mathcal {F}}^{[n]}(X) = \left( \prod _{i=1}^n {\mathcal {F}}(P_i)^{(-1)^i} \right) {\mathcal {F}}(Y). \end{aligned}$$

Theorem A.4

([18, Corollary 3.21]) Let \({\mathcal {F}}: {\mathcal {C}}\rightarrow \Omega \) be a quasi-Fitting invariant. Then there exists a unique family \(\{{\mathcal {F}}^{\langle n \rangle }: {\mathcal {M}}\rightarrow \Omega \}_{n \in {\mathbb {Z}}}\) of maps satisfying the following. Firstly, \({\mathcal {F}}^{\langle 0 \rangle }: {\mathcal {M}}\rightarrow \Omega \) is an extension of \({\mathcal {F}}: {\mathcal {C}}\rightarrow \Omega \). Secondly, if \(0 \rightarrow Y \rightarrow P_1 \rightarrow \dots \rightarrow P_d \rightarrow X \rightarrow 0\) is an exact sequence in \({\mathcal {M}}\) with \(P_i \in {\mathcal {P}}\) for \(1 \le i \le d\), then

$$\begin{aligned} {\mathcal {F}}^{\langle n \rangle }(X) = \left( \prod _{i=1}^{d} {\mathcal {F}}(P_i)^{(-1)^{n-d+i}} \right) {\mathcal {F}}^{\langle n-d \rangle }(Y). \end{aligned}$$

The rest of this section is devoted to algebraic propositions which we use in Sect. 7.

Definition A.5

Let \({\mathcal {I}}, {\mathcal {J}}\) be fractional ideals of \({\mathcal {R}}\). If \({\mathcal {I}}\subset {\mathcal {J}}\) and moreover the quotient \({\mathcal {J}}/{\mathcal {I}}\) is finite, then we write \({\mathcal {I}}\subset _{{{\,\mathrm{fin}\,}}} {\mathcal {J}}\) and \({\mathcal {J}}\supset _{{{\,\mathrm{fin}\,}}} {\mathcal {I}}\).

Lemma A.6

Put \({\mathcal {F}}= {{\,\mathrm{Fitt}\,}}_{{\mathcal {R}}}\). For \(X \in {\mathcal {M}}\) and a finite submodule \(X'\) of X, we have \({\mathcal {F}}(X) \subset _{{{\,\mathrm{fin}\,}}} {\mathcal {F}}(X/X')\).

Proof

It is well-known that

$$\begin{aligned} {\mathcal {F}}(X/X') {\mathcal {F}}(X') \subset {\mathcal {F}}(X) \subset {\mathcal {F}}(X/X') \end{aligned}$$

in this case. Since \({\mathcal {F}}(X') \subset _{{{\,\mathrm{fin}\,}}} {\mathcal {R}}\), the lemma follows. \(\square \)

Definition A.7

For an \({\mathcal {R}}\)-module X, we define \(E^i(X) = {{\,\mathrm{Ext}\,}}_{{\mathcal {R}}}^i(X, {\mathcal {R}})\) for \(i \ge 0\). Since \({{\,\mathrm{Hom}\,}}_{{\mathcal {R}}}(X, {\mathcal {R}})\) is an \({\mathcal {R}}\)-module by \((af)(x) = a f(x)\) for \(a \in {\mathcal {R}}, f \in {{\,\mathrm{Hom}\,}}_{{\mathcal {R}}}(X, {\mathcal {R}})\), and \(x \in {\mathcal {R}}\), the derived functor \(E^i(X)\) also admits an \({\mathcal {R}}\)-module structure.

Proposition A.8

Put \({\mathcal {F}}= {{\,\mathrm{Fitt}\,}}_{{\mathcal {R}}}\). Let \(0 \rightarrow X \rightarrow P_1 \rightarrow P_2 \rightarrow Y \rightarrow 0\) be an exact sequence in \({\mathcal {M}}\). Suppose that \(P_i \in {\mathcal {P}}\) holds for \(i = 1,2\). Then

$$\begin{aligned} {\mathcal {F}}(P_1){\mathcal {F}}(Y) \subset _{{{\,\mathrm{fin}\,}}} {\mathcal {F}}(P_2){\mathcal {F}}(E^1(X)). \end{aligned}$$

Proof

Note that this is an equality if \(Y \in {\mathcal {C}}\) (see [2, Lemma 5] or [18, Proposition 4.7]). To treat the case where \(Y \not \in {\mathcal {C}}\), we modify the argument of [18].

Define \({\mathcal {F}}^*: {\mathcal {C}}\rightarrow \Omega \) by \({\mathcal {F}}^*(X) = {\mathcal {F}}(E^1(X))\) for \(X \in {\mathcal {C}}\). Then \({\mathcal {F}}^*\) is again a quasi-Fitting invariant by the duality properties of \(E^1\) on \({\mathcal {C}}\) (see [18, Proposition 3.11]). Hence Theorem A.4 yields maps \(({\mathcal {F}}^*)^{ \langle n \rangle }: {\mathcal {M}}\rightarrow \Omega \), which satisfies

$$\begin{aligned} ({\mathcal {F}}^*)^{ \langle 2 \rangle }(Y) = {\mathcal {F}}^*(P_2) {\mathcal {F}}^*(P_1)^{-1} ({\mathcal {F}}^*)^{\langle 0 \rangle }(X). \end{aligned}$$

Observe that \({\mathcal {F}}^*(P_i) = {\mathcal {F}}(E^1(P_i)) = {\mathcal {F}}(P_i)\) by [18, Lemma 4.6] and \(({\mathcal {F}}^*)^{\langle 0 \rangle }(X) = {\mathcal {F}}^*(X) = {\mathcal {F}}(E^1(X))\) by \(X \in {\mathcal {C}}\). Therefore we have

$$\begin{aligned} ({\mathcal {F}}^*)^{ \langle 2 \rangle }(Y) = {\mathcal {F}}(P_2){\mathcal {F}}(P_1)^{-1}{\mathcal {F}}(E^1(X)). \end{aligned}$$
(A.1)

Thus our goal is to show \({\mathcal {F}}(Y) \subset _{{{\,\mathrm{fin}\,}}} ({\mathcal {F}}^*)^{ \langle 2 \rangle }(Y)\) for \(Y \in {\mathcal {M}}\).

Take an element \(f \in \Lambda \setminus \{0\}\) which annihilates Y. By a presentation \({\mathcal {R}}^b \overset{h}{\rightarrow } {\mathcal {R}}^a \rightarrow Y \rightarrow 0\) of Y, construct an exact sequence

$$\begin{aligned} 0 \rightarrow X' \rightarrow ({\mathcal {R}}/f)^b \overset{{\overline{h}}}{\rightarrow } ({\mathcal {R}}/f)^a \rightarrow Y \rightarrow 0. \end{aligned}$$
(A.2)

Then by (A.1), we have \(({\mathcal {F}}^*)^{ \langle 2 \rangle }(Y) = f^{a-b}{\mathcal {F}}(E^1(X'))\). Let Z be the image of \({\overline{h}}\) in the sequence (A.2), which is contained in \({\mathcal {C}}\). Then the two short exact sequences obtained by splitting (A.2) induce the following commutative diagram with exact row and column.

Here, we identify \(E^1(R/f) \simeq R/f\) naturally and the superscript T denotes the transpose. This diagram induces an exact sequence

$$\begin{aligned} 0 \rightarrow E^2(Y) \rightarrow {{\,\mathrm{Cok}\,}}({\overline{h}}^T) \rightarrow E^1(X') \rightarrow 0. \end{aligned}$$

Since \(E^2(Y)\) is a finite module, Lemma A.6 implies that \({\mathcal {F}}({{\,\mathrm{Cok}\,}}({\overline{h}}^T)) \subset _{{{\,\mathrm{fin}\,}}} {\mathcal {F}}(E^1(X'))\). Therefore

$$\begin{aligned} ({\mathcal {F}}^*)^{ \langle 2 \rangle }(Y) = f^{a-b} {\mathcal {F}}(E^1(X')) \supset _{{{\,\mathrm{fin}\,}}} f^{a-b} {\mathcal {F}}({{\,\mathrm{Cok}\,}}({\overline{h}}^T)) = {\mathcal {F}}({{\,\mathrm{Cok}\,}}({\overline{h}})) = {\mathcal {F}}(Y), \end{aligned}$$

which completes the proof. \(\square \)

For a prime ideal \({\mathfrak {q}}\) of \(\Lambda \) of height one, let \(\Lambda _{{\mathfrak {q}}}\) be the localization of \(\Lambda \) at \({\mathfrak {q}}\) and put \({\mathcal {R}}_{{\mathfrak {q}}} = \Lambda _{{\mathfrak {q}}} \otimes _{\Lambda } {\mathcal {R}}\).

Definition A.9

For fractional ideals \({\mathcal {I}}, {\mathcal {J}}\) of \({\mathcal {R}}\), we say \({\mathcal {I}}\) and \({\mathcal {J}}\) are commensurable if both \({\mathcal {I}}\cap {\mathcal {J}}\subset _{{{\,\mathrm{fin}\,}}} {\mathcal {I}}\) and \({\mathcal {I}}\cap {\mathcal {J}}\subset _{{{\,\mathrm{fin}\,}}} {\mathcal {J}}\) hold. In that case we write \({\mathcal {I}}\sim _{{{\,\mathrm{fin}\,}}} {\mathcal {J}}\). Equivalently, \({\mathcal {I}}\sim _{{{\,\mathrm{fin}\,}}} {\mathcal {J}}\) if and only if \({\mathcal {I}}{\mathcal {R}}_{{\mathfrak {q}}} = {\mathcal {J}}{\mathcal {R}}_{{\mathfrak {q}}}\) for any prime ideal \({\mathfrak {q}}\) of \(\Lambda \) of height 1. It follows that \(\sim _{{{\,\mathrm{fin}\,}}}\) is an equivalence relation.

Lemma A.10

Let \(f, g \in {\mathcal {R}}\) be non-zero-divisors and \({\mathcal {I}}\subset {\mathcal {R}}\) be an ideal containing a non-zero-divisor. Suppose that either \({\mathcal {I}}{\mathcal {R}}_{p\Lambda } = {\mathcal {R}}_{p\Lambda }\) or the order of G is relatively prime to p holds. Then \(f{\mathcal {I}}\sim _{{{\,\mathrm{fin}\,}}} g{\mathcal {I}}\) implies \(f{\mathcal {R}}= g{\mathcal {R}}\).

Proof

At first we suppose \({\mathcal {I}}= {\mathcal {R}}\) holds. Consider the natural injective map \(f{\mathcal {R}}/(f{\mathcal {R}}\cap g{\mathcal {R}}) \hookrightarrow {\mathcal {R}}/g{\mathcal {R}}\). On the one hand, the assumption \(f{\mathcal {R}}\sim _{{{\,\mathrm{fin}\,}}} g{\mathcal {R}}\) implies that \(f{\mathcal {R}}/(f{\mathcal {R}}\cap g{\mathcal {R}})\) is finite. On the other hand, \({\mathcal {R}}/g{\mathcal {R}}\) does not contain non-trivial finite submodules since \({\mathcal {R}}/g{\mathcal {R}}\in {\mathcal {P}}\subset {\mathcal {C}}\). Therefore we obtain \(f{\mathcal {R}}\subset g{\mathcal {R}}\). By symmetry we conclude \(f{\mathcal {R}}= g{\mathcal {R}}\), which proves the lemma when \({\mathcal {I}}= {\mathcal {R}}\).

In general, for any prime ideal \({\mathfrak {q}}\) of \(\Lambda \) of height 1, we claim that the ideal \({\mathcal {I}}{\mathcal {R}}_{{\mathfrak {q}}}\) is invertible. If \({\mathfrak {q}}\ne p\Lambda \) or the order of G is relatively prime to p, then this is clear since \({\mathcal {R}}_{{\mathfrak {q}}}\) is a product of principal ideal domains (and \({\mathcal {I}}\) contains a non-zero-divisor). Otherwise, our assumption \({\mathcal {I}}{\mathcal {R}}_{p\Lambda } = {\mathcal {R}}_{p\Lambda }\) implies the claim. Now suppose \(f{\mathcal {I}}\sim _{{{\,\mathrm{fin}\,}}} g{\mathcal {I}}\) holds. Then, for any \({\mathfrak {q}}\), we have \(f{\mathcal {I}}{\mathcal {R}}_{{\mathfrak {q}}} = g{\mathcal {I}}{\mathcal {R}}_{{\mathfrak {q}}}\), which implies \(f {\mathcal {R}}_{{\mathfrak {q}}} = g {\mathcal {R}}_{{\mathfrak {q}}}\) by the above claim. Therefore \(f{\mathcal {R}}\sim _{{{\,\mathrm{fin}\,}}} g{\mathcal {R}}\) and we conclude \(f{\mathcal {R}}= g{\mathcal {R}}\) by the case \({\mathcal {I}}= {\mathcal {R}}\), which is already established. This completes the proof. \(\square \)

Remark A.11

The assumption \({\mathcal {I}}{\mathcal {R}}_{p\Lambda } = {\mathcal {R}}_{p\Lambda }\) is necessary when the order of G is divisible by p. For example, suppose G is a cyclic group of order p and consider \({\mathcal {I}}= (p, N_G)\), where \(N_G\) is the norm element. Then we can easily verify \((p+N_G){\mathcal {I}}= p{\mathcal {I}}\) and \((p+N_G){\mathcal {R}}\ne p{\mathcal {R}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataoka, T. Equivariant Iwasawa theory for elliptic curves. Math. Z. 298, 1653–1725 (2021). https://doi.org/10.1007/s00209-020-02666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02666-7

Keywords

Mathematics Subject Classification

Navigation