Skip to main content
Log in

Dynamical irreducibility of polynomials modulo primes

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For a class of polynomials \(f \in {\mathbb {Z}}[X]\), which in particular includes all quadratic polynomials, and also trinomials of some special form, we show that, under some natural conditions (necessary for quadratic polynomials), the set of primes p such that all iterations of f are irreducible modulo p is of relative density zero. Furthermore, we give an explicit bound on the rate of the decay of the density of such primes in an interval [1, Q] as \(Q \rightarrow \infty \). For this class of polynomials this gives a more precise version of a recent result of Ferraguti (Proc Am Math Soc 146:2773–2784, 2018), which applies to arbitrary polynomials but requires a certain assumption about their Galois group. Furthermore, under the Generalised Riemann Hypothesis we obtain a stronger bound on this density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, N.: Stabilité des polynômes. Acta Arith. 119, 53–63 (2005)

    Article  MathSciNet  Google Scholar 

  2. Ayad, M., McQuillan, D. L.: Irreducibility of the iterates of a quadratic polynomial over a field. Acta Arith. 93, 87–97 (2000) [Corrigendum: Acta Arith., 99 (2001), 97]

  3. Benedetto, R., DeMarco, L., Ingram, P., Jones, R., Manes, M., Silverman, J.H., Tucker, T.J.: Current trends and open problems in arithmetic dynamics. Bull. Am. Math. Soc. 56, 611–685 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bérczes, A., Evertse, J.-H., Györy, K.: Effective results for hyper- and superelliptic equations over number fields. Publ. Math. Debr. 82, 727–756 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Bombieri, E., Gubler, W.: Heights in Diophantine geometry. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  6. Cox, D.: Primes of the form $x^2+ny^2$: Fermat, class field theory, and complex multiplication. Wiley, New York (1997)

    Book  Google Scholar 

  7. Ferraguti, A.: The set of stable primes for polynomial sequences with large Galois group. Proc. Am. Math. Soc. 146, 2773–2784 (2018)

    Article  MathSciNet  Google Scholar 

  8. Gómez, D., Nicolás, A.P.: An estimate on the number of stable quadratic polynomials. Finite Fields Appl. 16(6), 401–405 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gómez, D., Nicolás, A.P., Ostafe, A., Sadornil, D.: Stable polynomials over finite fields. Rev. Mat. Iberoam. 30, 523–535 (2014)

    Article  MathSciNet  Google Scholar 

  10. Granville, A.: ABC allows us to count squarefrees. Int. Math. Res. Not. 19, 991–1009 (1998)

    Article  MathSciNet  Google Scholar 

  11. Heath-Brown, D.R.: The square sieve and consecutive squarefree numbers. Math. Ann. 266, 251–259 (1984)

    Article  MathSciNet  Google Scholar 

  12. Heath-Brown, D.R., Micheli, G.: Irreducible polynomials over finite fields produced by composition of quadratics. Rev. Mat. Iberoam. (2020) (to appear)

  13. Iwaniec, H., Kowalski, E.: Analytic number theory. American Mathematical Society, Providence, RI (2004)

    MATH  Google Scholar 

  14. Jones, R.: The density of prime divisors in the arithmetic dynamics of quadratic polynomials. J. Lond. Math. Soc. 78, 523–544 (2008)

    Article  MathSciNet  Google Scholar 

  15. Jones, R.: An iterative construction of irreducible polynomials reducible modulo every prime. J. Algebra 369, 114–128 (2012)

    Article  MathSciNet  Google Scholar 

  16. Jones, R., Boston, N.: Settled polynomials over finite fields. Proc. Am. Math. Soc. 140, 1849–1863 (2012)

    Article  MathSciNet  Google Scholar 

  17. Jones, R., Boston, N.: Errata to “Settled polynomials over finite fields”. Proc. Am. Math. Soc. 148, 913–914 (2020)

    Article  MathSciNet  Google Scholar 

  18. Konyagin, S., Shparlinski, I.E.: Quadratic non-residues in short intervals. Proc. Am. Math. Soc. 143, 4261–4269 (2015)

    Article  MathSciNet  Google Scholar 

  19. Langevin, M.: ‘Cas dégalité pour le théorème de Mason et applications de la conjecture (abc),’. C. R. Acad. Sci. Paris Sér. I Math. 317, 441–444 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge University Press, Cambridge (1986)

  21. Montgomery, H.L., Vaughan, R.C.: Multiplicative number theory I: Classical theory. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  22. Silverman, J.H.: The arithmetic of dynamical systems. Springer, New York (2007)

    Book  Google Scholar 

  23. Tenenbaum, G.: Introduction to analytic and probabilistic number theory, Grad. Studies Math., vol. 163. American Mathematical Society, Providence, RI (2015)

  24. von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University Press, Cambridge (1999)

Download references

Acknowledgements

The authors thank Andrea Ferraguti for feedback on an early version of the paper and pointing out an imprecision in the initial statement of Theorem 1.2 and supplying the example at the end of Sect. 1.2. The authors are also grateful to the anonymous referee for helpful comments and suggestions. During the preparation of this work, L.M. was supported by the Austrian Science Fund (FWF): Project P31762, A. O. was supported by the Australian Research Council (ARC): Grant DP180100201 and I. S. was supported by the Australian Research Council (ARC): Grant DP170100786.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Mérai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mérai, L., Ostafe, A. & Shparlinski, I.E. Dynamical irreducibility of polynomials modulo primes. Math. Z. 298, 1187–1199 (2021). https://doi.org/10.1007/s00209-020-02630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02630-5

Navigation