Skip to main content
Log in

The space of cubic surfaces equipped with a line

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The Cayley–Salmon theorem implies the existence of a 27-sheeted covering space of the parameter space of smooth cubic surfaces, marking each of the 27 lines on each surface. In this paper we compute the rational cohomology of the total space of this cover, using the spectral sequence in the method of simplicial resolution developed by Vassiliev. The covering map is an isomorphism in cohomology (in fact of mixed Hodge structures) and the cohomology ring is isomorphic to that of \({{\,\mathrm{PGL}\,}}(4,{\mathbb {C}})\). We derive as a consequence of our theorem that over the finite field \({\mathbb {F}}_q\) the average number of lines on a smooth cubic surface equals 1 (away from finitely many characteristics); this average is \(1 + O(q^{-1/2})\) by a standard application of the Weil conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For \(i = 1\) this means the first column is 0. This description of the generators generalizes to \({{\,\mathrm{GL}\,}}(n) \subset M(n)\).

  2. Recall that the fundamental class of an orientable but not necessarily compact n-manifold M without boundary is a generator of \(\overline{H}_{n} (M)\), and the choice of the generator corresponds to the choice of an orientation on M.

References

  1. Allcock, D., Carlson, J.A., Toledo, D.: The complex hyperbolic geometry of the moduli space of cubic surfaces. J. Algebr. Geom. 11(4), 659–724 (2002). https://doi.org/10.1090/S1056-3911-02-00314-4. ISSN: 10563911

    Article  MathSciNet  MATH  Google Scholar 

  2. Brundu, M., Logar, A.: Parametrization of the orbits of cubic surfaces. Transform. Groups 3(3), 209–239 (1998). https://doi.org/10.1007/bf01236873. ISSN: 1083-4362

    Article  MathSciNet  MATH  Google Scholar 

  3. Bredon, G.E.: Sheaf Theory, Second, ser. Graduate Texts in Mathematics, vol. 170, p. xii+502. Springer, New York (1997). https://doi.org/10.1007/978-1-46120647-7. ISBN: 0-387-94905-4

  4. Bergström, J., Tommasi, O.: The rational cohomology of \({\overline{\cal{M}}}_{4}\). Mathematische Annalen 338(1), 207–239 (2007). https://doi.org/10.1007/s00208-006-0073-z. ISSN: 0025-5831

  5. Carter, R.W.: Finite Groups of Lie Type: Conjugacy Classes and Irreducible Characters. Wiley, Chichester (1993). Wiley Classics Lib, 1985

    Google Scholar 

  6. Cayley, A.: On the triple tangent planes of surfaces of the third order. Camb. Dublin Math. J. 4, 118–132 (1849)

    Google Scholar 

  7. Deligne, P.: Cohomologie étale, ser Lecture Notes in Mathematics, p. iv+312. Springer, Berlin (1977). https://doi.org/10.1007/BFb0091526. Séminaire de géométrie algébrique du Bois-Marie SGA 4\(\frac{1}{2}\), ISBN: 0-387-08066-X

    Book  Google Scholar 

  8. Deligne, P.: La conjecture de weil. II. Inst. Hautes Études. Sci. Publ. Math. 1, 137–252 (1980). ISSN: 0073-8301

    Article  Google Scholar 

  9. Dolgachev, I., van Geemen, B., Kondo, S.: A complex ball uniformization of the moduli space of cubic surfaces via periods of K3 surfaces. J. Reine Angew. Math. 588, 99148 (2005). https://doi.org/10.1515/crll.2005.2005.588.99. ISSN: 0075-4102

    Article  MathSciNet  MATH  Google Scholar 

  10. Harris, J.: Galois groups of enumerative problems. Duke Math. J. 46(4), 685724 (1979). ISSN: 0012-7094

    MathSciNet  Google Scholar 

  11. Jordan, C.: Traité des substitutions et des équations algébriques, ser. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Sceaux, 1989, pp. xvi\(+\)670, Reprint of the 1870 original, ISBN: 2-87647-021-7 (1989)

  12. Looijenga, E.: Artin groups and the fundamental groups of some moduli spaces. J. Topol. 1(1), 187–216 (2008). https://doi.org/10.1112/jtopol/jtm009. ISSN: 1753-8416

    Article  MathSciNet  MATH  Google Scholar 

  13. Manin, Y.I.: Cubic forms. Algebra, geometry, arithmetic, Translated from the Russian by M. Hazewinkel, vol. 4, 2nd edn, p. x+326. North-Holland Publishing Co., Amsterdam (1986). ISBN: 0-444-87823-8

    Google Scholar 

  14. Milne, J.S.: Lectures on Etale Cohomology (v2.21). , p. 202 (2013)

  15. Naruki, I.: Cross ratio variety as a moduli space of cubic surfaces. Proc. London Math. Soc. (3) 45(1), 1–30 (1982). https://doi.org/10.1112/plms/s3-45.1.1. With an appendix by Eduard Looijenga

    Article  MathSciNet  MATH  Google Scholar 

  16. Peters, C.A.M., Steenbrink, J.H.M.: Degeneration of the leray spectral sequence for certain geometric quotients. Mosc. Math. J. 3(3), 1085–1095, 1201 (2003). ISSN: 1609-3321

    Article  MathSciNet  Google Scholar 

  17. Tommasi, O.: Stable cohomology of spaces of non-singular hypersurfaces. Adv. Math. 265, 428–440 (2014). https://doi.org/10.1016/j.aim.2014.08.005. ISSN: 0001-8708

    Article  MathSciNet  MATH  Google Scholar 

  18. Totaro, B.: Configuration spaces of algebraic varieties. Topology 35(4), 10571067 (1996). https://doi.org/10.1016/0040-9383(95)00058-5. ISSN: 0040-9383

    Article  MathSciNet  Google Scholar 

  19. Vassiliev, V.A.: Complements of discriminants of smooth maps: topology and applications, ser Translations of Mathematical Monographs. Translated from the Russian by B. Goldfarb, vol. 98, p. vi+208. American Mathematical Society, Providence (1992). ISBN: 0-82184555-1

    Book  Google Scholar 

  20. Vassiliev, V.A.: How to calculate the homology of spaces of nonsingular algebraic projective hypersurfaces, Tr. Mat. Inst. Steklova, vol. 225, no. Solitony Geom. Topol. na Perekrest, pp. 132–152. (1999) ISSN: 0371-9685

Download references

Acknowledgements

I would like to thank Benson Farb for his invaluable advice and comments throughout the composition of this paper and also for suggesting the problem. I am also grateful to Weiyan Chen, Nir Gadish, Sean Howe and Akhil Mathew for many helpful conversations. I am grateful to Igor Dolgachev for pointing me towards some existing results about moduli spaces of cubic surfaces. I would like to thank Maxime Bergeron, Priyavrat Deshpande, Eduard Looijenga and Jesse Wolfson for their helpful comments to make the paper more readable. Finally, thanks to the anonymous referee for their many comments and suggestions, which helped to greatly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronno Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R. The space of cubic surfaces equipped with a line. Math. Z. 298, 653–670 (2021). https://doi.org/10.1007/s00209-020-02606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02606-5

Mathematics Subject Classification

Navigation