Skip to main content
Log in

Genus decreasing formula for higher genus Welschinger invariants

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the changes experienced by higher genus Welschinger invariants of real del Pezzo surfaces in families undergoing a nodal degeneration and obtain a genus decreasing wall-crossing formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arroyo, A., Brugallé, E., de Medrano, L.L.: Recursive formulas for Welschinger invariants of the projective plane. Int. Math. Res. Not. IMRN 2011(5), 1107–1134 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.: On analytic surfaces with double points. Proc. R. Soc. Lond. Ser. A 247, 237–244 (1958)

    Article  MathSciNet  Google Scholar 

  3. Borel, A., Haefliger, A.: La classe d’homologie fondamentale d’un espace analytique. Bull. Soc. Math. France 89, 461–513 (1961)

    Article  MathSciNet  Google Scholar 

  4. Brugallé, E.: Floor diagrams relative to a conic, and GW-W invariants of del Pezzo surfaces. Adv. Math. 279, 438–500 (2015)

    Article  MathSciNet  Google Scholar 

  5. Brugallé, E.: Surgery of real symplectic fourfolds and Welschinger invariants. J. Singul. 17, 267–294 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Brugallé, E., Puignau, N.: Behavior of Welschinger invariants under Morse simplifications. Rend. Semin. Mat. Univ. Padova 130, 147–153 (2013)

    Article  MathSciNet  Google Scholar 

  7. Brugallé, E., Puignau, N.: On Welschinger invariants of symplectic \(4\)-manifolds. Comment. Math. Helv. 90(4), 905–938 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chen, X.: Steenrod Pseudocycles, Lifted Cobordisms, and Solomon’s Relations for Welschinger’s Invariants (2018). arXiv:1809.08919

  9. Degtyarev, A., Itenberg, I., Kharlamov, V.: Real Enriques surfaces, Lect. Notes Math., vol. 1746. Springer-Verlag, Berlin Heidelberg (2000)

  10. Degtyarev, A., Kharlamov, V.: Topological properties of real algebraic varieties: Rokhlin’s way. Russ. Math. Surveys 55(4), 735–814 (2000)

    Article  MathSciNet  Google Scholar 

  11. Ding, Y., Hu, J.: Welschinger invariants of blow-ups of symplectic 4-manifolds. Rocky Mount. J. Math. 48(4), 1105–1144 (2018)

    Article  MathSciNet  Google Scholar 

  12. Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. Geom. Funct. Anal., Special Volume, Part II, 560–673 (2000)

  13. Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. In: Algebraic geometry—Santa Cruz 1995. Symposia in Pure Mathematics, vol. 62, Part 2, pp. 45–96. American Mathematical Society, Providence, RI (1997)

  14. Göttsche, L., Pandharipande, R.: The quantum cohomology of blow-ups of \(\mathbb{P}^2\) and enumerative geometry. J. Differ. Geom. 48(1), 61–90 (1998)

    Article  Google Scholar 

  15. Ionel, E., Parker, T.: The symplectic sum formula for Gromov-Witten invariants. Ann. of Math. (2) 159(3), 935–1025 (2004)

    Article  MathSciNet  Google Scholar 

  16. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariant and enumeration of real rational curves. Int. Math. Res. Not. 2003(49), 2639–2653 (2003)

    Article  MathSciNet  Google Scholar 

  17. Itenberg, I., Kharlamov, V., Shustin, E.: Logarithmic equivalence of the Welschinger and the Gromov-Witten invariants. Russian Math. Surveys 59(6), 1093–1116 (2004)

    Article  MathSciNet  Google Scholar 

  18. Itenberg, I., Kharlamov, V., Shustin, E.: New cases of logarithmic equivalence of Welschinger and Gromov-Witten invariants. Proc. Steklov Inst. Math. 258(1), 65–73 (2007)

    Article  MathSciNet  Google Scholar 

  19. Itenberg, I., Kharlamov, V., Shustin, E.: A Caporaso-Harris type formula for Welschinger invariants of real toric del Pezzo surfaces. Comment. Math. Helv. 84(1), 87–126 (2009)

    Article  MathSciNet  Google Scholar 

  20. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariants of real del Pezzo surfaces of degree \( \geqslant 3\). Math. Ann. 355(3), 849–878 (2013)

    Article  MathSciNet  Google Scholar 

  21. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariants of small non-toric Del Pezzo surfaces. J. Eur. Math. Soc. (JEMS) 15(2), 539–594 (2013)

    Article  MathSciNet  Google Scholar 

  22. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariants of real del Pezzo surfaces of degree \(\geqslant 2\). Int. J. Math. 26(8), 1550060, 63 (2015)

    Article  MathSciNet  Google Scholar 

  23. Itenberg, I., Kharlamov, V., Shustin, E.: Relative enumerative invariants of real nodal del Pezzo surfaces. Selecta Math. (N.S.) 24(4), 2927–2990 (2018)

    Article  MathSciNet  Google Scholar 

  24. Itenberg, I., Kharlamov, V., Shustin, E.: Welschinger invariants revisited. In: M. Andersson, J. Boman, C. Kiselman, P. Kurasov, R. Sigurdsson (eds.) Analysis Meets Geometry. Trends in Mathematics, pp. 239–260. Birkhüser, Cham (2017)

  25. Li, A.-M., Ruan, Y.: Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3-folds. Invent. Math. 145(1), 151–218 (2001)

    Article  MathSciNet  Google Scholar 

  26. Li, J.: A degeneration formula of GW-invariants. J. Differ. Geom. 60(2), 199–293 (2002)

    Article  MathSciNet  Google Scholar 

  27. Li, J.: Lecture notes on relative GW-invariants. In: Intersection theory and moduli, ICTP Lect. Notes, XIX, pp. 41–96 (electronic). Abdus Salam Int. Cent. Theoret. Phys., Trieste (2004)

  28. Ruan, Y., Tian, G.: A mathematical theory of quantum cohomology. J. Differ. Geom. 42(2), 259–367 (1995)

    Article  MathSciNet  Google Scholar 

  29. Shoval, M., Shustin, E.: On Gromov–Witten invariants of del Pezzo surfaces. Int. J. Math. 24(7), 1350054, 44 (2013)

    Article  MathSciNet  Google Scholar 

  30. Shustin, E.: On higher genus Welschinger invariants of del Pezzo surfaces. Int. Math. Res. Not. IMRN 2015(16), 6907–6940 (2015)

    Article  MathSciNet  Google Scholar 

  31. Vakil, R.: Counting curves on rational surfaces. Manuscripta Math. 102(1), 53–84 (2000)

    Article  MathSciNet  Google Scholar 

  32. Welschinger, J.Y.: Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry. C. R. Math. Acad. Sci. Paris 336(4), 341–344 (2003)

    Article  MathSciNet  Google Scholar 

  33. Welschinger, J.Y.: Invariants of real symplectic \(4\)-manifolds and lower bounds in real enumerative geometry. Invent. Math. 162(1), 195–234 (2005)

    Article  MathSciNet  Google Scholar 

  34. Welschinger, J.Y.: Optimalité, congruences et calculs dinvariants des variétés symplectiques réelles de dimension quatre (2007). arXiv:0707.4317

Download references

Acknowledgements

The author is particularly grateful to Prof. Jianxun Hu for his continuous support and encouragement as well as enlightening discussions, and to Erwan Brugallé for pointing out a mistake of the first manuscript of this paper and sharing the situation of the definition of higher genus Welschinger invariants. The author is also very grateful to the referee for valuable comments and suggestions on the manuscript that allowed him to improve the presentation. This work was supported by Startup Research Fund of Zhengzhou University (No. 161131003) and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiao Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Curves on del Pezzo surfaces

Appendix: Curves on del Pezzo surfaces

We recall some basic facts from [30, Sect. 2 and Appendix A].

Let X be a smooth projective rational surface and \(D\in {\text {Pic}}(X)\). Let \({{\mathscr {M}}}_{g,n}(X,D)\), \(g\ge 0\), be the set of isomorphism classes of pairs \((f:\varSigma _g\rightarrow X, {\varvec{p}})\), where \(\varSigma _g\) is a Riemann surface of genus g, f is a holomorphic map such that \(f_*\varSigma _g\in |D|\), and \({\varvec{p}}=(p_1,\ldots ,p_n)\) is a sequence of distinct points in \(\varSigma _g\). We denote by \({\overline{{\mathscr {M}}}}_{g,n}(X,D)\) the space of stable maps of genus g with n marked points. More precisely, \({\overline{{\mathscr {M}}}}_{g,n}(X,D)\) consists of isomorphism classes of pairs \((f:{\hat{\varSigma }}_g\rightarrow X, {\varvec{p}})\) which satisfy the following conditions:

  • \({\hat{\varSigma }}_g\) is either a Riemann surface of genus g or a connected reducible nodal curve of arithmetic genus g;

  • f is a holomorphic map such that \(f_*{\hat{\varSigma }}_g\in |D|\);

  • \({\varvec{p}}=(p_1,\ldots ,p_n)\) is a sequence of distinct smooth points in \({\hat{\varSigma }}_g\), and each component C of \({\hat{\varSigma }}_g\) of genus \(g'\) which is contracted by f contains at least \(3-2g'\) special points.

The points in \({\varvec{p}}\) are called marked points. Marked points together with the nodal points in \({\hat{\varSigma }}_g\) are called special points. An isomorphism between two pairs \((f_1:{\hat{\varSigma }}_g\rightarrow X, {\varvec{p}})\) and \((f_2:{\hat{\varSigma }}'_g\rightarrow X, {\varvec{p'}})\) is an isomorphism \(\phi :{\hat{\varSigma }}_g\rightarrow {\hat{\varSigma }}'_g\) such that \(f_1=f_2\circ \phi \) and \(p_i'=\phi (p_i)\). According to [13], \({\overline{{\mathscr {M}}}}_{g,n}(X,D)\) is a projective scheme. There are two natural maps:

$$\begin{aligned} \varPhi :\quad {\overline{{\mathscr {M}}}}_{g,n}(X,D)\rightarrow |D|,&\quad [f:{\hat{\varSigma }}_g\rightarrow X, {\varvec{p}}]\mapsto f_*{\hat{\varSigma }}_g,\\ ev:\quad {\overline{{\mathscr {M}}}}_{g,n}(X,D)\rightarrow X^n,&\quad [f:{\hat{\varSigma }}_g\rightarrow X, {\varvec{p}}]\mapsto f({\varvec{p}}). \end{aligned}$$

The intersection dimension \({\text {idim}}{\mathscr {V}}\) of any subscheme \({\mathscr {V}}\subset {\overline{{\mathscr {M}}}}_{g,n}(X,D)\) is defined as the maximum over the dimensions of all irreducible components of \((\varPhi \times ev)({\mathscr {V}})\). Denote by

$$\begin{aligned} \begin{aligned} {{\mathscr {M}}}^{br}_{g,n}(X,D)=\{[f:{\hat{\varSigma }}_g\rightarrow X, {\varvec{p}}]\in {\mathscr {M}}_{g,n}(X,D)| {\hat{\varSigma }}_g \text { is smooth, and} \\ f \text { is birational on to }f({\hat{\varSigma }}_g)\},\\ {{\mathscr {M}}}^{im}_{g,n}(X,D)=\{[f:{\hat{\varSigma }}_g\rightarrow X, {\varvec{p}}]\in {{\mathscr {M}}}^{br}_{g,n}(X,D)| f \text { is an immersion}\}. \end{aligned} \end{aligned}$$

Let \(\overline{{\mathscr {M}}^{br}_{g,n}}(X,D)\) denote the closure of \({{\mathscr {M}}}^{br}_{g,n}(X,D)\) in \({{\overline{{\mathscr {M}}}}}_{g,n}(X,D)\). Denote by

$$\begin{aligned} {{\mathscr {M}}}'_{g,n}(X,D)=\{[f:{\hat{\varSigma }}_g\rightarrow X, {\varvec{p}}]\in {\overline{{\mathscr {M}}}}^{br}_{g,n}(X,D)| {\hat{\varSigma }}_g \text { is smooth}\}. \end{aligned}$$

Suppose X is a del Pezzo surface which is sufficiently generic in its deformation class and \(-DK_X>0\). It follows from [30, Lemma A.3], \({\text {idim}}{{\mathscr {M}}}'_{g,0}(X,D)\le -DK_X+g-1\). This inequality indicates that \(-DK_X+g-1\) is the upper bound of the dimensions of all irreducible components of \(\varPhi ({{\mathscr {M}}}'_{g,0}(X,D))\) in |D|. In the rest of this section, we use notation \(n=-DK_X+g-1\). From [30, Lemma A.3], we know that if \({{\mathscr {M}}}^{br}_{g,0}(X,D)\) is not empty, \(\dim {{\mathscr {M}}}^{br}_{g,0}(X,D)\le n\) and \({{\mathscr {M}}}^{im}_{g,0}(X,D)\) is an open dense subset of \({{\mathscr {M}}}^{br,n}_{g,0}(X,D)\), where \({{\mathscr {M}}}^{br,n}_{g,0}(X,D)\) is the union of the components of \({{\mathscr {M}}}^{br}_{g,0}(X,D)\) of dimension n. From the proof of [30, Lemma A.3], we know \(\dim {{\mathscr {M}}}'_{g,0}(X,D){\setminus }{{\mathscr {M}}}^{br,n}_{g,0}(X,D)<n\). One can choose n generic points \({\varvec{w}}\) in X such that the curves in \(\varPhi ({{\mathscr {M}}}'_{g,0}(X,D))\subset |D|\) passing \({\varvec{w}}\) are actually in \(\varPhi ({{\mathscr {M}}}^{im}_{g,0}(X,D))\). Therefore, any irreducible curve \(C\in |D|\) of genus g, passing through \({\varvec{w}}\) are contained in \(\varPhi ({{\mathscr {M}}}^{im}_{g,0}(X,D))\). Suppose \([f:{\hat{\varSigma }}_g\rightarrow X]\in {{\mathscr {M}}}^{im}_{g,0}(X,D)\) is a parametrization of C, and denote by \({\varvec{p}}=f^{-1}({\varvec{w}})\subset {\hat{\varSigma }}_g\). Since \({\varvec{w}}\) is generic in X, \({\varvec{p}}\) consists of n points.

In summary, if the del Pezzo surface X is sufficiently generic in its deformation class and \({\varvec{w}}\) is generic, the set

$$\begin{aligned} {\mathscr {C}}^{\mathbb {C}}(X,D,g,{\varvec{w}}):=\{[f:\varSigma _g\rightarrow X, {\varvec{p}}]\in {\mathscr {M}}_{g,n}(X,D)|f({\varvec{p}})={\varvec{w}}\} \end{aligned}$$
(3.4)

is finite and consists of immersed curves. Moreover, the elements of \({\mathscr {C}}^{\mathbb {C}}(X,D,g,{\varvec{w}})\) are exactly the parametrizations of elements in the set of irreducible immersed curves \(C\in |D|\) of genus g, passing through \({\varvec{w}}\). Hence, in this case it makes no difference to consider immersed curves in a given divisor class or the parametrized curves, even though these two settings are not equivalent in general.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y. Genus decreasing formula for higher genus Welschinger invariants. Math. Z. 296, 969–985 (2020). https://doi.org/10.1007/s00209-020-02458-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02458-z

Keywords

Mathematics Subject Classification

Navigation