Skip to main content
Log in

Archimedean non-vanishing, cohomological test vectors, and standard L-functions of \({\mathrm {GL}}_{2n}\): real case

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The standard L-functions of \({\mathrm {GL}}_{2n}\) expressed in terms of the Friedberg-Jacquet global zeta integrals have better structure for arithmetic applications, due to the relation of the linear periods with the modular symbols. The most technical obstacles towards such arithmetic applications are (1) non-vanishing of modular symbols at infinity and (2) the existence or construction of uniform cohomological test vectors. Problem (1) is also called the non-vanishing hypothesis at infinity, which was proved by Sun [Duke Math J 168(1):85–126, (2019), Theorem 5.1], by establishing the existence of certain cohomological test vectors. In this paper, we explicitly construct an archimedean local integral that produces a new type of a twisted linear functional \(\Lambda _{s,\chi }\), which, when evaluated with our explicitly constructed cohomological vector, is equal to the local twisted standard L-function \(L(s,\pi \otimes \chi )\) for all complex values s. With the relations between linear models and Shalika models, we establish (1) with an explicitly constructed cohomological vector using classical invariant theory, and hence proves the non-vanishing results of Sun [24, Theorem 5.1] via a completely different method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash, A., Borel, A.: Generalized modular symbols. Cohomology of arithmetic groups and automorphic forms (Luminy-Marseille, 1989), Lecture Notes in Math., vol. 1447, pp. 57–75. Springer, Berlin (1990)

  2. Ash, A., Ginzburg, D.: \(p\)-adic \(L\)-functions for \({\rm GL}(2n)\). Invent. Math. 116(1–3), 27–73 (1994)

    Article  MathSciNet  Google Scholar 

  3. Aizenbud, A., Gourevitch, D.: Generalized Harish–Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet–Rallis’s theorem. With an appendix by the authors and Eitan Sayag. Duke Math. J. 149(3), 509–567 (2009)

    Article  MathSciNet  Google Scholar 

  4. Aizenbud, A., Gourevitch, D., Jacquet, H.: Uniqueness of Shalika functionals: the Archimedean case. Pac. J. Math. 243(2), 201–212 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chen, F., Sun, B.: Uniqueness of twisted linear periods and twisted Shalika periods. Sci. China Math. (2019). https://doi.org/10.1007/s11425-018-9502-y

    Article  MATH  Google Scholar 

  6. Clozel, L.: Motifs et formes automorphes: applications du principe de fonctorialit (French). Automorphic forms, Shimura varieties, and L-functions, vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, pp. 77-159. Academic Press, Boston (1990)

  7. Friedberg, S., Jacquet, H.: Linear periods. J. Reine Angew. Math. 443, 91–139 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Godement, R., Jacquet, H.: Zeta functions of simple algebras. Lecture Notes in Mathematics, vol. 260. Springer, Berlin, New York (1972)

  9. Grobner, H., Raghuram, A.: On the arithmetic of Shalika models and the critical values of L-functions for \({\rm GL}(2n)\). With an appendix by Wee Teck Gan. Am. J. Math. 136(3), 675–728 (2014)

    Article  Google Scholar 

  10. Goodman, R., Wallach, N.: Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009)

    Book  Google Scholar 

  11. Jacquet, H.: Archimedean Rankin–Selberg Integrals. Automorphic forms and L-functions II. Local aspects, Contemp. Math., 489, Israel Math. Conf. Proc., pp. 57–172. American Mathematical Society, Providence, RI (2009)

  12. Jacquet, H., Langlands, R.: Automorphic forms on \({\rm GL}(2)\). Lecture Notes in Mathematics, vol. 114. Springer, Berlin, New York (1970)

  13. Jacquet, H., Piatetski-Shapiro, I., Shalika, J.: Rankin-Selberg convolutions. Am. J. Math. 105(2), 367–464 (1983)

    Article  MathSciNet  Google Scholar 

  14. Jiang, D., Sun, B., Tian, F.: Period Relations of Standard L-functions of Symplectic Type (2019). arXiv:1909.03476(preprint)

  15. Knapp, A.: Lie Groups Beyond an Introduction. Progress in mathematics (Boston, Mass.), vol. 140, 2nd edn. Birkhäuser, Boston (2002)

  16. Knapp, A.: Langlands, Local, correspondence: the archimedean case, Motives, Proceedings of Symposia in Pure Mathematics, Part 2, vol. 55, pp. 393–410. American Mathematical Society, Providence, Rhode Island (1994)

  17. Langlands, R.: On the classification of irreducible representations of real algebraic groups. Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, pp. 101–170. American Mathematical Society, Providence, RI (1989)

  18. Lin, B., Tian, F.: Archimedean Non-vanishing, Cohomological Test Vectors, and Standard \(L\)-functions of \({\rm GL}_{2n}\): Complex Case (2019). arXiv:1904.00144(preprint)

  19. Mahnkopf, J.: Cohomology of arithmetic groups, parabolic subgroups and the special values of L-functions on \({\rm GL}_n\). J. Inst. Math. Jussieu 4(4), 553–637 (2005)

    Article  MathSciNet  Google Scholar 

  20. Matringe, N.: On the local Bump–Friedberg \(L\)-function. J. Reine Angew. Math. 709, 119–170 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Matringe, N.: Shalika periods and parabolic induction for \({\rm GL}(n)\) over a non-archimedean local field. Bull. Lond. Math. Soc. 49(3), 417–427 (2017)

    Article  MathSciNet  Google Scholar 

  22. Nien, C.-F.: Uniqueness of Shalika models. Can. J. Math. 61(6), 1325–1340 (2009)

    Article  MathSciNet  Google Scholar 

  23. Popa, A.: Whittaker newforms for Archimedean representations. J. Number Theory 128(6), 1637–1645 (2008)

    Article  MathSciNet  Google Scholar 

  24. Sun, B.: Cohomologically induced distinguished representations and cohomological test vectors. Duke Math. J. 168(1), 85–126 (2019)

    Article  MathSciNet  Google Scholar 

  25. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Pure and Applied Mathematics, vol. 25. Academic Press, New York (1967)

    MATH  Google Scholar 

  26. Vogan Jr., D.: The unitary dual of \({\rm GL}(n)\) over an Archimedean field. Invent. Math. 83(3), 449–505 (1986)

    Article  MathSciNet  Google Scholar 

  27. Vogan Jr., D., Zuckerman, G.: Unitary representations with nonzero cohomology. Compos. Math. 53(1), 51–90 (1984)

    MathSciNet  MATH  Google Scholar 

  28. Wallach, N.: Real Reductive Groups II. Academic Press, New York (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyang Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Jiang is supported in part by the NSF Grants DMS–1600685 and DMS–1901802; that of Lin is supported in part by the China Scholarship Council No.201706245006; and that of Tian is is supported in part by AcRF Tier 1 grant R-146-000-277-114 of National University of Singapore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Jiang, D., Lin, B. et al. Archimedean non-vanishing, cohomological test vectors, and standard L-functions of \({\mathrm {GL}}_{2n}\): real case. Math. Z. 296, 479–509 (2020). https://doi.org/10.1007/s00209-019-02453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02453-z

Keywords

Mathematics Subject Classification

Navigation