Skip to main content
Log in

Affine connections on 3-Sasakian and manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2019

This article has been updated

Abstract

The space of invariant affine connections on every 3-Sasakian homogeneous manifold of dimension at least seven is described. In particular, the subspace of invariant affine metric connections and the subclass with skew torsion are also determined. To this aim, an explicit construction of all 3-Sasakian homogeneous manifolds is exhibited. It is shown that the 3-Sasakian homogeneous manifolds which admit nontrivial Einstein with skew torsion invariant affine connections are those of dimension seven, that is, \({\mathbb {S}}^7\), \({\mathbb {R}}P^7\) and the Aloff–Wallach space \({\mathfrak {W}}^{7}_{1,1}\). On \({\mathbb {S}}^7\) and \({\mathbb {R}}P^7\), the set of such connections is bijective to two copies of the conformal linear transformation group of the Euclidean space, while it is strictly bigger on \({\mathfrak {W}}^{7}_{1,1}\). The set of invariant connections with skew torsion whose Ricci tensor satisfies that its eigenspaces are the canonical vertical and horizontal distributions, is fully described on 3-Sasakian homogeneous manifolds. An affine connection satisfying these conditions is distinguished, by parallelizing all the Reeb vector fields associated with the 3-Sasakian structure, which is also Einstein with skew torsion on the 7-dimensional examples. The invariant metric affine connections on 3-Sasakian homogeneous manifolds with parallel skew torsion have been found. Finally, some results have been adapted to the non-homogeneous setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 27 July 2019

    In the original publication of this article, the title was incorrectly published as “<Emphasis Type="Bold">Affine connections on 3-Sasakian and manifolds</Emphasis>”. The correct title should be “<Emphasis Type="Bold">Affine connections on 3-Sasakian homogeneous manifolds</Emphasis>”.

Notes

  1. Our convention is \(d\eta (X,Y)=X(\eta (Y))-Y(\eta (X))-\eta ([X,Y])\).

  2. Recall that there is exactly one irreducible \(\mathfrak {sl}(2,{\mathbb {C}})\)-module of each dimension \(n+1\), which is frequently denoted by V(n). It coincides with \(V(n)\cong S^n(V(\lambda _1))\). In particular \(V(1)\cong V(\lambda _1)\cong {\mathbb {C}}^2\) is given by the columns.

  3. Our convention for the exterior product of a p-form \(\omega _1\) and a q-form \(\omega _2\) is the following

    $$\begin{aligned} \omega _1\wedge \omega _2(X_1,\dots ,X_{p+q})= \frac{1}{p!q!}{\sum }_{\sigma \in S_{p+q}}(-1)^{[\sigma ]} \omega _1(X_{\sigma (1)},\dots ,X_{\sigma (p)})\omega _1(X_{\sigma (p+1)},\dots ,X_{\sigma (p+q)}). \end{aligned}$$
  4. Be aware that the expression of \(\omega _{_{\nabla }}\) on the preliminar version arXiv:1503.08401v1 have a wrong coefficient \(\frac{1}{2}\), corrected in the version [22].

References

  1. Agricola, I.: Non-integrable geometries, torsion, and holonomy. In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry, , vol. 16, pp. 277–346, IRMA Lect. Math. Theor. Phys., Eur. Math. Soc., Zürich (2010)

  2. Agricola, I., Ferreira, A.C.: Einstein manifolds with skew torsion. Q. J. Math. 65(3), 717–741 (2014). https://doi.org/10.1093/qmath/hat050

    Article  MathSciNet  MATH  Google Scholar 

  3. Agricola, I., Friedrich, T.: On the holonomy of connections with skew-symmetric torsion. Math. Ann. 328, 711–748 (2004). https://doi.org/10.1007/s00208-003-0507-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Agricola, I., Friedrich, T.: \(3\)-Sasakian manifolds in dimension seven, their spinors and \(G_2\)-structures. J. Geom. Phys. 60(2), 326–332 (2010). https://doi.org/10.1016/j.geomphys.2009.10.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Agricola, I., Dileo, G.: Generalizations of 3-Sasakian manifolds and skew torsion, Preprint arXiv:1804.06700 (April, 2018) (To appear in Adv. Geom.)

  6. Alekseevski, D.V.: Classification of quaternionic spaces with transitive solvable group of motions. Izv. Akad. Nauk SSSR Ser. Mat. 39(2), 315–362 (1975). https://doi.org/10.1070/IM1975v009n02ABEH001479

    Article  MathSciNet  Google Scholar 

  7. Aloff, S., Wallach, N.R.: An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull. Am. Math. Soc. 81, 93–97 (1975)

    Article  MathSciNet  Google Scholar 

  8. Benito, P., Draper, C., Elduque, A.: Lie-Yamaguti algebras related to \({\mathfrak{g}}_2\). J. Pure Appl. Algebra 202(1), 22–54 (2005). https://doi.org/10.1016/j.jpaa.2005.01.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Bielawski, R.: On the hyperkaehler metrics associated with singularities of nilpotent varieties. Ann. Glob. Anal. Geom. 14, 177–191 (1996). https://doi.org/10.1007/BF00127972

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyer, C., Galicki, K.: Sasakian geometry. Oxford Mathematical Monographs. Oxford University Press, New York (2008)

  11. Boyer, C.P., Galicki, K., Mann, B.M.: Quaternionic reduction and Einstein manifolds. Commun. Anal. Geom. 1(2), 229–279 (1993). https://doi.org/10.4310/CAG.1993.v1.n2.a3

    Article  MathSciNet  MATH  Google Scholar 

  12. Boyer, C.P., Galicki, K., Mann, B.M.: The topology and geometry of \(3\)-Sasakian manifolds. J. Reine Angew. Math. 455, 183–220 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Cappelletti-Montano, B.: 3-structures with torsion. Differ. Geom. Appl. 27, 496–506 (2009). https://doi.org/10.1016/j.difgeo.2009.01.009

    Article  MathSciNet  MATH  Google Scholar 

  14. Cappelletti-Montano, B., De Nicola, A., Dileo, G.: 3-quasi-Sasakian manifolds. Ann. Glob. Anal. Geom. 33, 397–409 (2008)

    Article  MathSciNet  Google Scholar 

  15. Cartan, É.: Les récentes généralisations de la notion d’espace. Bull. Sci. Math. 48, 294–320 (1924)

    MATH  Google Scholar 

  16. Cecil, T.E., Ryan, P.J.: Focal sets and real hypersurfaces in complex projective space. Trans. Am. Math. Soc. 269, 481–499 (1982). https://doi.org/10.1090/S0002-9947-1982-0637703-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Chitour, Y., Godoy Molina, M., Kokkonen, P., Markina, I.: Rolling against a sphere: the non-transitive case. J. Geom. Anal. 26, 2542–2562 (2016). https://doi.org/10.1007/s12220-015-9638-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Chrysikos, I.: Invariant connections with skew torsion and \(\nabla \)-Einstein manifolds. J. Lie Theory 26(1), 11–48 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Cleyton, R., Moroianu, A., Semmelmann, U.: Metric connections with parallel skew-symmetric torsion, Preprint arXiv:1807.00191 (2018)

  20. Cunha, I., Elduque, A.: An extended Freudenthal magic square in characteristic \(3\). J. Algebra 317(2), 471–509 (2007). https://doi.org/10.1016/j.jalgebra.2007.07.028

    Article  MathSciNet  MATH  Google Scholar 

  21. Draper Fontanals, C.: Notes on \(G_2\): the Lie algebra and the Lie group. Differ. Geom. Appl. 57, 23–74 (2018). https://doi.org/10.1016/j.difgeo.2017.10.011

    Article  MathSciNet  MATH  Google Scholar 

  22. Draper, C., Garvín, A., Palomo, F.J.: Invariant affine connections on odd-dimensional spheres. Ann. Glob. Anal. Geom. 49, 213–251 (2016). https://doi.org/10.1007/s10455-015-9489-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Draper, C., Garvín, A., Palomo, F.J.: Einstein with skew torsion connections on Berger spheres. J. Geom. Phys. 134, 133–141 (2018). https://doi.org/10.1016/j.geomphys.2018.08.006

    Article  MathSciNet  MATH  Google Scholar 

  24. Draper, C., Palomo, F.J.: Homogeneous Riemann–Cartan spheres. Pure Appl. Differ. Geom. Mem. Franki Dillen PADGE 2013, 126–134 (2012)

    MATH  Google Scholar 

  25. Elduque, A.: New simple Lie superalgebras in characteristic 3. J. Algebra 296(1), 196–233 (2006). https://doi.org/10.1016/j.jalgebra.2005.06.014

    Article  MathSciNet  MATH  Google Scholar 

  26. Friedrich, T., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6(2), 303–335 (2002). https://doi.org/10.4310/AJM.2002.v6.n2.a5

    Article  MathSciNet  MATH  Google Scholar 

  27. Friedrich, T., Ivanov, S.: Almost contact manifolds, connections with torsion and parallel spinors. J. Reine Angew. Math. 559, 217–236 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Friedrich, T., Kath, I.: 7-Dimensional compact Riemannian manifolds with Killing spinors. Commun. Math. Phys. 133, 543–561 (1990). https://doi.org/10.1007/BF02097009

    Article  MathSciNet  MATH  Google Scholar 

  29. Geipel, J.C., Sperling, M.: Instantons on Calabi-Yau and hyper-Kähler cones. J. High Energy Phys. 2017, 103 (2017). https://doi.org/10.1007/JHEP10(2017)103

    Article  MATH  Google Scholar 

  30. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9. Springer, New-York (1978). https://doi.org/10.1007/978-1-4612-6398-2

    Book  Google Scholar 

  31. Ishihara, S., Konishi, M.: Fibered Riemannian spaces with Sasakian \(3\)-structure. In: Differential Geometry in Honour of K. Yano, Kinokuniya, Tokyo, pp. 179–194 (1972)

  32. Ivey, A., Ryan, P.J.: Hopf hypersurfaces of small Hopf principal curvature in \(CH^2\). Geom. Dedic. 141, 147–161 (2009). https://doi.org/10.1007/s10711-008-9349-7

    Article  MATH  Google Scholar 

  33. Kac, V.G.: Infinite Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  34. Kashiwada, T.: A note on a Riemannian space with Sasakian \(3\)-structure. Nat. Sci. Rep. Ochanomizu Univ. 22(1), 1–2 (1971)

    MathSciNet  MATH  Google Scholar 

  35. Kim, H.S., Ryan, P.J.: A classification of pseudo-Einstein real hypersurfaces in \(CP^2\). Differ. Geom. Appl. 26(1), 106–112 (2008). https://doi.org/10.1016/j.difgeo.2007.11.007

    Article  MATH  Google Scholar 

  36. Laquer, H.T.: Invariant affine connections on Lie groups. Trans. Am. Math. Soc. 331, 541–551 (1992). https://doi.org/10.2307/2154126

    Article  MathSciNet  MATH  Google Scholar 

  37. Martínez, A., Pérez, J.D.: Real hypersurfaces in quaternionic projective space. Ann. Mat. Pura Appl. 145, 355–384 (1986). https://doi.org/10.1007/BF01790548

    Article  MathSciNet  MATH  Google Scholar 

  38. Montiel, S.: Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Jpn. 37(3), 515–535 (1985). https://doi.org/10.2969/jmsj/03730515

    Article  MathSciNet  MATH  Google Scholar 

  39. Nomizu, K.: Invariant affine connections on homogeneous spaces. Am. J. Math. 76(1), 33–65 (1954). https://doi.org/10.2307/2372398

    Article  MathSciNet  MATH  Google Scholar 

  40. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  41. Ortega, M., Pérez, J.D.: D-Einstein real hypersurfaces in quaternionic space forms. Ann. Mat. Pura Appl. 178, 33–44 (2000). https://doi.org/10.1007/BF02505886

    Article  MathSciNet  MATH  Google Scholar 

  42. Tits, J.: Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionelles. I. Construction. Nederl. Akab. Wetensch. Proc. Ser. A 69 = Indag. Math. 28, 223–237 (1966)

    Article  Google Scholar 

  43. Yamaguti, K., Asano, H.: On the Freudenthal’s construction of exceptional Lie algebras. Proc. Jpn. Acad. 51(4), 253–258 (1975). https://doi.org/10.3792/pja/1195518629

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for the deep reading of this manuscript, for his/her valuable suggestions to include Sect. 5.6 on parallel torsion and for several comments on the bibliography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ortega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. Draper is partially supported by the Spanish Ministery of Economy and Competitiveness (MEC), and European Region Development Fund (ERDF), project MTM2016-76327-C3-1-P and by the Junta de Andaluía Grant FQM-336. F. J. Palomo is partially supported by the Spanish MEC, and ERDF, project MTM2016-78807-C2-2-P. M. Ortega is partially supported by the Spanish MEC, and ERDF, project MTM2016-78807-C2-1-P. Also, M. Ortega and F. J. Palomo are partially supported by the Junta de Andalucía Grant FQM-324.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draper, C., Ortega, M. & Palomo, F.J. Affine connections on 3-Sasakian and manifolds. Math. Z. 294, 817–868 (2020). https://doi.org/10.1007/s00209-019-02304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02304-x

Keywords

Mathematics Subject Classification

Navigation