Skip to main content
Log in

Torus orbits on homogeneous varieties and Kac polynomials of quivers

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we prove that the counting polynomials of certain torus orbits in products of partial flag varieties coincides with the Kac polynomials of supernova quivers, which arise in the study of the moduli spaces of certain irregular meromorphic connections on trivial bundles over the projective line. We also prove that these polynomials can be expressed as a specialization of Tutte polynomials of certain graphs providing a new way to compute them. We also discuss connections with the Gel’fand–MacPherson correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Boalch, P.: Simply-laced isomonodromy systems. Publ. Math. IHES 116(1), 1–68 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Crawley-Boevey, W.: On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero. Duke Math. J. 118, 339–352 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crawley-Boevey, W., van den Bergh, M.: Absolutely indecomposable representations and Kac–Moody algebras. With an appendix by H. Nakajima. Invent. Math. 266, 537–559 (2004)

    MATH  Google Scholar 

  4. Fink, A., Speyer, D.E.: K-classes for matroids and equivariant localization. Duke Math. J. 161(14), 2699–2723 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gel’fand, I.M., MacPherson, R.D.: Geometry in Grassmannians and a generalization of the dilogarithm. Adv. Math. 44(3), 279–312 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gel’fand, I.M., Serganova, V.V.: Combinatorial geometries and the strata of a torus on homogeneous compact manifolds. Uspekhi Mat. Nauk. 42(2), 107–134, 287 (1987)

  7. Gel’fand, I.M., Goresky, R.M., MacPherson, R.D., Serganova, V.V.: Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63(3), 301–316 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ginzburg, V.: Lectures on Nakajima’s Quiver Varieties, Geometric Methods in Representation Theory. I, Sémin. Congr., vol. 24, Soc. Math. France, Paris, pp. 145–219 (2012)

  9. Godsil, C., Royle, G.: Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207. Springer, New York (2001)

    Book  MATH  Google Scholar 

  10. Hausel, T.: Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform. Proc. Natl. Acad. Sci USA 103, 6120–6124 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hausel, T., Sturmfels, B.: Toric hyperKähler varieties. Doc. Math. 7, 495–534 (2002) (electronic)

  12. Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Arithmetic harmonic analysis on character and quiver varieties. Duke Math. J. 160(2), 323–400 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Arithmetic harmonic analysis on character and quiver varieties II. Adv. Math. 234(234), 85–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Positivity for Kac polynomials and DT invariants of quivers. Ann. Math. (2) 177(3), 1147–1168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hua, J.: Counting representations of quivers over finite fields. J. Algebra 226, 1011–1033 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kac, V.: Root Systems, Representations of Quivers and Invariant Theory, Invariant Theory (Montecatini, 1982), Lecture Notes in Mathematics, vol. 996. Springer, Berlin, pp. 74–108 (1983)

  17. Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  18. Kapranov, M.M.: Chow Quotients of Grassmannians. I, I. M. Gel’fand Seminar, Adv. Soviet Math., vol. 16. Amer. Math. Soc., Providence, pp. 29–110 (1993)

  19. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  20. Sokal, A.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids, Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser., vol. 327. Cambridge University Press, Cambridge, pp. 173–226 (2005)

  21. Speyer, D.E.: A matroid invariant via the K-theory of the Grassmannian. Adv. Math. 221(3), 882–913 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Springer, T.A.: Linear Algebraic Groups, Modern Birkhäuser Classics, 2nd edn. Birkhäuser, Boston (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Letellier.

Additional information

Paul E. Gunnells is supported by the NSF Grant DMS-1101640. Emmanuel Letellier is supported by the Grant ANR-09-JCJC-0102-01 and ANR-13-BS01-0001-01. Fernando Rodriguez Villegas is supported by the NSF Grant DMS-1101484 and a Research Scholarship from the Clay Mathematical Institute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunnells, P.E., Letellier, E. & Villegas, F.R. Torus orbits on homogeneous varieties and Kac polynomials of quivers. Math. Z. 290, 445–467 (2018). https://doi.org/10.1007/s00209-017-2025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-2025-6

Mathematics Subject Classification

Navigation