Skip to main content
Log in

Convexity at infinity in Cartan–Hadamard manifolds and applications to the asymptotic Dirichlet and Plateau problems

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the asymptotic Dirichlet and Plateau problems on Cartan–Hadamard manifolds satisfying the so-called strict convexity (abbr. SC) condition. The main part of the paper consists in studying the SC condition on a manifold whose sectional curvatures are bounded from above and below by certain functions depending on the distance to a fixed point. In particular, we are able to verify the SC condition on manifolds whose curvature lower bound can go to \(-\infty \) and upper bound to 0 simultaneously at certain rates, or on some manifolds whose sectional curvatures go to \(-\infty \) faster than any prescribed rate. These improve previous results of Anderson, Borbély, and Ripoll and Telichevsky. We then solve the asymptotic Plateau problem for locally rectifiable currents with \(\mathbb {Z}_2\)-multiplicity in aCartan–Hadamard manifold satisfying the SC condition given any compact topologically embedded \((k-1)\)-dimensional submanifold of \(\partial _{\infty }M,\ 2\le k\le n-1\), as the boundary data. We also solve the asymptotic Plateau problem for locally rectifiable currents with \(\mathbb {Z}\)-multiplicity on any rotationally symmetric manifold satisfying the SC condition given a smoothly embedded submanifold as the boundary data. These generalize previous results of Anderson, Bangert, and Lang. Moreover, we obtain new results on the asymptotic Dirichlet problem for a large class of PDEs. In particular, we are able to prove the solvability of this problem on manifolds with super-exponential decay (to \(-\infty \)) of the curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren Jr., F.J.: \(Q\) valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two. Bull. Am. Math. Soc. (N.S.) 8(2), 327–328 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ancona, A.: Convexity at infinity and Brownian motion on manifolds with unbounded negative curvature. Rev. Mat. Iberoam. 10(1), 189–220 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, M.T.: Complete minimal varieties in hyperbolic space. Invent. Math. 69(3), 477–494 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, M.T.: Complete minimal hypersurfaces in hyperbolic \(n\)-manifolds. Comment. Math. Helv. 58(2), 264–290 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, M.T.: The Dirichlet problem at infinity for manifolds of negative curvature. J. Differ. Geom. 18(4), 701–721 (1983). (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnaudon, M., Thalmaier, A., Ulsamer, S.: Existence of non-trivial harmonic functions on Cartan–Hadamard manifolds of unbounded curvature. Math. Z. 263(2), 369–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bangert, V., Lang, U.: Trapping quasiminimizing submanifolds in spaces of negative curvature. Comment. Math. Helv. 71(1), 122–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borbély, A.: A note on the Dirichlet problem at infinity for manifolds of negative curvature. Proc. Am. Math. Soc. 114(3), 865–872 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borbély, A.: The nonsolvability of the Dirichlet problem on negatively curved manifolds. Differ. Geom. Appl. 8(3), 217–237 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casteras, J.-B., Holopainen, I., Ripoll, JB.: in progress

  11. Casteras, J.-B., Holopainen, I., Ripoll, J.B.: Asymptotic Dirichlet problem for \(\cal{A}\)-harmonic and minimal graph equations in a Cartan–Hadamard manifolds. Commun. Anal. Geom. (to appear)

  12. Choi, H.I.: Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds. Trans. Am. Math. Soc. 281(2), 691–716 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coskunuzer, B.: Asymptotic Plateau problem: a survey. In: Proceedings of the Gökova Geometry-Topology Conference 2013 (2014), Gökova Geometry/Topology Conference (GGT), Gökova, pp. 120–146

  14. Coskunuzer, B.: Asymptotic Plateau problem in \(\mathbb{H}^2\times \mathbb{R}\) (2016). arXiv:1604.01498 [math.DG]

  15. De Lellis, C.: The size of the singular set of area-minimizing currents. In: Surveys in differential geometry 2016. Advances in geometry and mathematical physics, Surv. Differ. Geom., vol. 21, pp. 1–83. Int. Press, Somerville (2016)

  16. De Lellis, C., Spadaro, E.: Regularity of area minimizing currents I: gradient \(L^p\) estimates. Geom. Funct. Anal. 24(6), 1831–1884 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eberlein, P., O’Neill, B.: Visibility manifolds. Pac. J. Math. 46, 45–109 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

  19. Federer, H.: The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension. Bull. Am. Math. Soc. 76, 767–771 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holopainen, I.: Nonsolvability of the asymptotic Dirichlet problem for the \(p\)-Laplacian on Cartan–Hadamard manifolds. Adv. Calc. Var. 9(2), 163–185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Holopainen, I., Ripoll, J.B.: Nonsolvability of the asymptotic Dirichlet problem for some quasilinear elliptic PDEs on Hadamard manifolds. Rev. Mat. Iberoam. 31(3), 1107–1129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Holopainen, I., Vähäkangas, A.: Asymptotic Dirichlet problem on negatively curved spaces. J. Anal. 15, 63–110 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Kasue, A.: A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold. Japan. J. Math. (N.S.) 8(2), 309–341 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kloeckner, B.T.R., Mazzeo, R.: On the asymptotic behavior of minimal surfaces in \(\mathbb{H}^2\times \mathbb{R}\). Indiana Univ. Math. J. 66(2), 631–658 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lang, U.: The existence of complete minimizing hypersurfaces in hyperbolic manifolds. Int. J. Math. 6(1), 45–58 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lang, U.: The asymptotic Plateau problem in Gromov hyperbolic manifolds. Calc. Var. Partial Differ. Equ. 16(1), 31–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morgan, F.: Harnack-type mass bounds and Bernstein theorems for area-minimizing flat chains modulo \(\nu \). Commun. Partial Differ. Equ. 11(12), 1257–1283 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morgan, F.: Geometric measure theory. A beginner’s guide, 4th edn. Elsevier/Academic Press, Amsterdam (2009)

  29. Ripoll, J., Telichevesky, M.: Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems. Trans. Am. Math. Soc. 367(3), 1523–1541 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ripoll, J., Tomi, F.: Complete minimal discs in Hadamard manifolds. Adv. Calc. Var. 10(4), 315–330 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis. Australian National University, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983)

  32. Vähäkangas, A.: Bounded \(p\)-harmonic functions on models and Cartan-Hadamard manifolds. Unpublished licentiate thesis, Department of Mathematics and Statistics, University of Helsinki, (2006)

  33. Warner, F.W.: Extensions of the Rauch comparison theorem to submanifolds. Trans. Am. Math. Soc. 122, 341–356 (1966)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the International Centre of Theoretical Physics (ICTP), Trieste, Italy, where part of this work has been done, for its support and kind hospitality. We are grateful to Urs Lang for his valuable comments on previous versions of the paper, in particular, for pointing out an incorrect assumption in Theorem  in the first version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkka Holopainen.

Additional information

J.-B.C. supported by the FNRS project MIS F.4508.14; I.H. supported by the Academy of Finland, project 252293; J.R. supported by the CNPq (Brazil) project 302955/2011-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casteras, JB., Holopainen, I. & Ripoll, J.B. Convexity at infinity in Cartan–Hadamard manifolds and applications to the asymptotic Dirichlet and Plateau problems. Math. Z. 290, 221–250 (2018). https://doi.org/10.1007/s00209-017-2016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-2016-7

Keywords

Mathematics Subject Classification

Navigation