Skip to main content

Advertisement

Log in

Holomorphic Morse inequalities for orbifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that Demailly’s holomorphic Morse inequalities hold true for complex orbifolds by using a heat kernel method. Then we introduce the class of Moishezon orbifolds and as an application of our inequalties, we give a geometric criterion for a compact connected orbifold to be a Moishezon orbifolds, thus generalizing Siu’s and Demailly’s answers to the Grauert–Riemenschneider conjecture to the orbifold case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreotti, A.: Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves. Bull. Soc. Math. Fr. 91, 1–38 (1963)

    MATH  Google Scholar 

  2. Bismut, J.M.: The Witten complex and the degenerate Morse inequalities. J. Differ. Geom. 23(3), 207–240 (1986). http://projecteuclid.org/euclid.jdg/1214440113

  3. Bismut, J.M.: Demailly’s asymptotic Morse inequalities: a heat equation proof. J. Funct. Anal. 72(2), 263–278 (1987). https://doi.org/10.1016/0022-1236(87)90089-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Bismut, J.M.: Equivariant Bott–Chern currents and the Ray–Singer analytic torsion. Math. Ann. 287(3), 495–507 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bismut, J.M., Lebeau, G.: Complex immersion and Quillen metrics. Publ. Math. IHES 74, 1–297 (1991)

    Article  MATH  Google Scholar 

  6. Bouche, T.: Convergence de la métrique de Fubini-Study d’un fibré linéaire positif. Ann. Inst. Fourier (Grenoble) 40(1), 117–130 (1990). http://www.numdam.org/item?id=AIF_1990__40_1_117_0

  7. Cartan, H.: Quotient d’un espace analytique par un groupe discret d’automorphismes. In: Séminaire Henri Cartan, vol. 6, pp. 1–13 (1953–1954)

  8. Cartan, H.: Quotient d’un espace analytique par un groupe d’automorphismes. In: Algebraic Geometry and Topology, pp. 90–102. Princeton University Press, Princeton (1957) (a symposium in honor of S. Lefschetz)

  9. Dai, X., Liu, K., Ma, X.: On the asymptotic expansion of Bergman kernel. J. Differ. Geom. 72(1), 1–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demailly, J.P.: Champs magnétiques et inégalités de Morse pour la \(d^{\prime \prime }\)-cohomologie. Ann. Inst. Fourier (Grenoble) 35, 189–229 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demailly, J.P.: Holomorphic Morse inequalities. In: Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, pp. 93–114. American Mathematical Society, Providence (1991)

  12. Demailly, J.P.: \(L^2\) vanishing theorems for positive line bundles and adjunction theory. In: Transcendental Methods in Algebraic Geometry (Cetraro, 1994), Lecture Notes in Mathematics, vol. 1646, pp. 1–97. Springer, Berlin (1996). https://doi.org/10.1007/BFb0094302

  13. Demailly, J.P.: Holomorphic Morse inequalities and the Green–Griffiths–Lang conjecture. Pure Appl. Math. Q. 7(4, Special Issue: In memory of Eckart Viehweg), 1165–1207 (2011). https://doi.org/10.4310/PAMQ.2011.v7.n4.a6

  14. Grauert, H., Riemenschneider, O.: Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen. Invent. Math. 11, 263–292 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hsiao, C.Y., Li, X.: Morse inequalities for Fourier components of Kohn–Rossi cohomology of CR manifolds with \(S^1\)-action. Math. Z. 284(1–2), 441–468 (2016). https://doi.org/10.1007/s00209-016-1661-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsiao, C.Y., Marinescu, G.: Szegö kernel asymptotics and Morse inequalities on CR manifolds. Math. Z. 271(1–2), 509–553 (2012). https://doi.org/10.1007/s00209-011-0875-x

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawasaki, T.: The signature theorem for \(V\)-manifolds. Topology 17(1), 75–83 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kawasaki, T.: The index of elliptic operators over \(V\)-manifolds. Nagoya Math. J. 84, 135–157 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, X.: Orbifolds and analytic torsions. Trans. Am. Math. Soc. 357, 2205–2233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, vol. 254. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  21. Ma, X., Marinescu, G.: Berezin–Toeplitz quantization and its kernel expansion. In: Geometry and Quantization, Trav. Math., vol. 19, pp. 125–166. Univ. Luxemb., Luxembourg (2011)

  22. Siegel, C.L.: Meromorphe Funktionen auf kompakten analytischen Mannigfaltigkeiten. Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl. IIa. 71–77, 1955 (1955)

    MathSciNet  MATH  Google Scholar 

  23. Siu, Y.T.: A vanishing theorem for semipositive line bundles over non-Kähler manifolds. J. Differ. Geom. 19(2), 431–452 (1984). http://projecteuclid.org/euclid.jdg/1214438686

  24. Siu, Y.T.: Some recent results in complex manifold theory related to vanishing theorems for the semipositive case. In: Workshop Bonn 1984 (Bonn, 1984), Lecture Notes in Math., vol. 1111, pp. 169–192. Springer, Berlin (1985). https://doi.org/10.1007/BFb0084590

  25. Siu, Y.T.: An effective Matsusaka big theorem. Ann. Inst. Fourier (Grenoble) 43(5), 1387–1405 (1993). http://www.numdam.org/item?id=AIF_1993__43_5_1387_0

  26. Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17(4), 661–692 (1983). http://projecteuclid.org/euclid.jdg/1214437492

Download references

Acknowledgements

The author thanks Xiaonan Ma and George Marinescu for helpful discussions and comments on the present paper, as well as the referee for the improvements he or she has suggested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Puchol.

Additional information

This work was performed within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puchol, M. Holomorphic Morse inequalities for orbifolds. Math. Z. 289, 1237–1260 (2018). https://doi.org/10.1007/s00209-017-1996-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1996-7

Keywords

Mathematics Subject Classification

Navigation