Skip to main content
Log in

On almost everywhere divergence of Bochner–Riesz means on compact Lie groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let G be a connected, simply connected, compact semisimple Lie group of dimension n. It has been shown by Clerc (Ann Inst Fourier Grenoble 24(1):149–172, 1974) that, for any \(f\in L^1(G)\), the Bochner–Riesz mean \(S_R^\delta (f)\) converges almost everywhere to f, provided \(\delta >(n-1)/2\). In this paper, we show that, at the critical index \(\delta =(n-1)/2\), there exists an \(f\in L^1(G)\) such that

$$\begin{aligned} \limsup _{R\rightarrow \infty } \big |S_{R}^{(n-1)/2}(f)(x)\big |=\infty ,\quad \ a.e.\ x\in G. \end{aligned}$$

This is an analogue of a well-known result of Kolmogoroff (Fund Math 4(1):324–328, 1923) for Fourier series on the circle, and a result of Stein (Ann Math 2(74):140–170, 1961) for Bochner–Riesz means on the tori \(\mathbb {T}^{n}, n\ge 2\). We also study localization properties of the Bochner–Riesz mean \(S_{R}^{(n-1)/2}(f)\) for \(f\in L^1(G)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Alternatively, one can take Q to be any fundamental domain centered at 0, and \(Q_0\) a sufficiently small ball centered at 0.

References

  1. Bloom, W.R., Xu, Z.F.: Approximation of \(H^p\)-functions by Bochner–Riesz means on compact Lie groups. Math. Z. 216(1), 131–145 (1994). https://doi.org/10.1007/BF02572312

    Article  MathSciNet  MATH  Google Scholar 

  2. Bochner, S.: Summation of multiple Fourier series by spherical means. Trans. Am. Math. Soc. 40(2), 175–207 (1936). https://doi.org/10.2307/1989864

    Article  MathSciNet  MATH  Google Scholar 

  3. Cecchini, C.: Lacunary Fourier series on compact Lie groups. J. Funct. Anal. 11, 191–203 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christ, F.M., Sogge, C.D.: The weak type \(L^1\) convergence of eigenfunction expansions for pseudodifferential operators. Invent. Math. 94(2), 421–453 (1988). https://doi.org/10.1007/BF01394331

    Article  MathSciNet  MATH  Google Scholar 

  5. Clerc, J.L.: Sommes de Riesz et multiplicateurs sur un groupe de Lie compact. Ann. Inst. Fourier Grenoble 24(1), 149–172 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colzani, L., Giulini, S., Travaglini, G.: Sharp results for the mean summability of Fourier series on compact Lie groups. Math. Ann. 285(1), 75–84 (1989). https://doi.org/10.1007/BF01442672

    Article  MathSciNet  MATH  Google Scholar 

  7. Colzani, L., Giulini, S., Travaglini, G., Vignati, M.: Pointwise convergence of Fourier series on compact Lie groups. Colloq. Math. 60/61(2), 379–386 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowling, M., Mantero, A.M., Ricci, F.: Pointwise estimates for some kernels on compact Lie groups. Rend. Circ. Mat. Palermo (2) 31(2), 145–158 (1982). https://doi.org/10.1007/BF02844350

    Article  MathSciNet  MATH  Google Scholar 

  9. Dreseler, B.: Norms of zonal spherical functions and Fourier series on compact symmetric spaces. J. Funct. Anal. 44(1), 74–86 (1981). https://doi.org/10.1016/0022-1236(81)90005-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Giulini, S., Soardi, P.M., Travaglini, G.: Norms of characters and Fourier series on compact Lie groups. J. Funct. Anal. 46(1), 88–101 (1982). https://doi.org/10.1016/0022-1236(82)90045-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University Press, Oxford, Revised by Heath-Brown, D.R., Silverman, J.H. With a foreword by Andrew Wiles (2008)

  12. Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0131-8

    Book  MATH  Google Scholar 

  13. Kahane, J.P.: Sur la divergence presque sûre presque partout de certaines séries de Fourier aléatoires. Ann. Univ. Sci. Budapest Eötvös Sect. Math. 3–4, 101–108 (1960/1961)

  14. Kolmogoroff, A.: Une série de Fourier–Lebesgue divergente presque partout. Fund. Math. 4(1), 324–328 (1923)

    Article  MATH  Google Scholar 

  15. Mayer, R.: Localization for Fourier series on \({\rm SU}(2)\). Trans. Am. Math. Soc. 130, 414–424 (1968a)

    MathSciNet  MATH  Google Scholar 

  16. Mayer, R.A.: An example of non-localization for Fourier series on \({{\rm SU}}(2)\). IL. J. Math. 12, 325–334 (1968b)

    MathSciNet  MATH  Google Scholar 

  17. Meaney, C.: A Cantor–Lebesgue theorem for spherical convergence on a compact Lie group. In: Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen’s Univ., Kingston, Ont., 1977), Queen’s Univ., Kingston, Ont., pp. 506–512. Queen’s Papers in Pure Appl. Math., No. 48 (1978)

  18. Ragozin, D.L.: Approximation theory, absolute convergence, and smoothness of random Fourier series on compact Lie groups. Math. Ann. 219(1), 1–11 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stanton, R.J.: Mean convergence of Fourier series on compact Lie groups. Trans. Am. Math. Soc. 218, 61–87 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stanton, R.J., Tomas, P.A.: Polyhedral summability of Fourier series on compact Lie groups. Am. J. Math. 100(3), 477–493 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stein, E.M.: On limits of seqences of operators. Ann. Math. 2(74), 140–170 (1961)

    Article  MathSciNet  Google Scholar 

  22. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ (1971)

  23. Sugiura, M.: Fourier series of smooth functions on compact Lie groups. Osaka J. Math. 8, 33–47 (1971)

    MathSciNet  MATH  Google Scholar 

  24. Taylor, M.E.: Fourier series on compact Lie groups. Proc. Am. Math. Soc. 19, 1103–1105 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Varadarajan, V.S.: On the convergence of sample probability distributions. Sankhyā 19, 23–26 (1958)

    MathSciNet  MATH  Google Scholar 

  26. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library, Cambridge University Press, Cambridge, reprint of the second (1944) edition (1995)

  27. Xu, Z.F.: The generalized Abel means of \(H^p\) functions \((0<p\le 1)\) on compact Lie groups. Chin. Ann. Math. Ser. A 13(1), 101–110 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Založnik, A.: Function spaces generated by blocks associated with spheres, Lie groups and spaces of homogeneous type. Trans. Am. Math. Soc. 309(1), 139–164 (1988). https://doi.org/10.2307/2001163

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghong Chen.

Additional information

Dashan Fan was partially supported by the National Natural Science Foundation of China (Grant Nos. 11471288, 11601456).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Fan, D. On almost everywhere divergence of Bochner–Riesz means on compact Lie groups. Math. Z. 289, 961–981 (2018). https://doi.org/10.1007/s00209-017-1983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1983-z

Keywords

Mathematics Subject Classification

Navigation