Skip to main content
Log in

Frobenius semisimplicity for convolution morphisms

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This article concerns properties of mixed \(\ell \)-adic complexes on varieties over finite fields, related to the action of the Frobenius automorphism. We establish a fiberwise criterion for the semisimplicity and Frobenius semisimplicity of the direct image complex under a proper morphism of varieties over a finite field. We conjecture that the direct image of the intersection complex on the domain is always semisimple and Frobenius semisimple; this conjecture would imply that a strong form of the decomposition theorem of Beilinson–Bernstein–Deligne–Gabber is valid over finite fields. We prove our conjecture for (generalized) convolution morphisms associated with partial affine flag varieties for split connected reductive groups over finite fields. As a crucial tool, we develop a new schematic theory of big cells for loop groups. With suitable reformulations, the main results are valid over any algebraically closed ground field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We have normalized the intersection complex \(\mathcal {IC}_X\) of an integral variety X so that if X is smooth, then \(\mathcal {IC}_X \cong {\overline{\mathbb Q}_\ell }_X\); this is not a perverse sheaf; the perverse sheaf counterpart is \(IC_X=\mathcal {IC}_X [\dim X]\).

  2. Equivalently, \(\mathcal {F}\) is pure of weight w and each \(\mathcal {H}^i(\mathcal F)\) is pointwise pure of weight \(w+i\) in the sense of  [3, p.  126].

  3. The reason for using \(t^{-1}\) instead of t here is to make (3.4) and (3.5) true.

References

  1. Achar, P.N., Riche, S.: Koszul duality and semisimplicity of Frobenius. Ann. Inst. Fourier Grenoble. 63, 1511–1612 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164, 385–419 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beilinson, A., Bernstein, I.N., Deligne, P.: Faisceaux Pervers, Astérisque 100 (1981)

  4. Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9(2), 473–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezrukavnikov, R., Yun, Z.: On Koszul duality for Kac–Moody groups. Rep. Theory 17, 1–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98(3), 480–497 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée. Inst. Hautes Études Sci. Publ. Math. 60, 197–376 (1984)

    Article  MATH  Google Scholar 

  8. Conrad, B., Gabber, O., Prasad, G.: Pseudo-reductive groups, new mathematical monographs: 17, Cambridge Univ. Press, Cambridge, pp. 533 +xix (2010)

  9. de Cataldo, M.A.: The perverse filtration and the Lefschetz hyperplane theorem, II. J. Algebra Geom. 21(2), 305–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Cataldo, M.A.: Proper toric maps over finite fields. Int. Math. Res. Not. 2015(24), 13106–13121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Cataldo, M.A., Migliorini, L., Mustaţă, M.: The combinatorics and topology of proper toric maps. Crelle’s J (to appear)

  12. de Jong, A.J.: Smoothness, semi-stability and alterations. Publ. Math. de l’I.H.É.S, tome 83, 51–93 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deligne, P.: La conjecture de Weil pour les surfaces \(K3\). Invent. Math. 15, 206–226 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Denef, J., Loser, F.: Weights of exponential sums, intersection cohomology, and Newton polyhedra. Invent. Math. 106(2), 275–294 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Faltings, G.: Algebraic loop groups and moduli spaces of bundles. J. Eur. Math. Soc. 5, 41–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fulton, W.: Intersection Theory, Ergebnisse. der Math. u. ihrer Grenzgebiete, 3. Folge, Band 2, Springer, New York pp. 470 +xi (1984)

  17. Görtz, U., Haines, T.: The Jordan–Hölder series for nearby cycles on some Shimura varieties and affine flag varieties. J. Reine Angew. Math. 609, 161–213 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Görtz, U., Wedhorn, T.: Algebraic geometry I: schemes with examples and exercises. Vieweg+Teubner pp. 615+vii (2010)

  19. Grothendieck, A., Diéudonné, J.: Éléments de Géométrie Algeébrique, III: Le Langage de schemas, Inst.  Hautes Études Sci. Publ. Math. 4 (1960)

  20. Grothendieck, A., Diéudonné, J.: Éléments de Géométrie Algeébrique, III: Étude cohomologique des faisceaux cohérents, Inst.  Hautes Études Sci. Publ. Math. 11 (1961)

  21. Grothendieck, A., Diéudonné, J.: Éléments de Géométrie Algeébrique, IV: Étude locale ded schémas e des morphismes de schémas, Seconde partie, Inst.  Hautes Études Sci. Publ. Math. 24 (1965)

  22. Haines, T.: A proof of the Kazhdan-Lusztig purity theorem via the decomposition theorem of BBD, note, around (2005). Available at www.math.umd.edu/~tjh

  23. Haines, T.: Equidimensionality of convolution morphisms and applications to saturation problems. Adv. Math. 207(1), 297–327 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Haines, T., Rapoport, M.: Appendix: on parahoric subgroups. Adv. Math. 219(1), 188–198 (2008); appendix to: Pappas, G., Rapoport, M.: Twisted loop groups and their affine flag varieties. Adv. Math. 219 (1), 118–198 (2008)

  25. Haines, T., Wilson, K.: A Tannakian description of Bruhat–Tits buildings and parahoric group schemes. (in preparation)

  26. Hesselink, W.H.: Concentration under actions of algebraic groups. In: Dubreil, P., Marie-Paule, M. (eds.), Algebra seminar, 33rd Year (Paris, 1980), volume 867 of Lecture Notes in Math., pp. 55–89. Springer, Berlin (1981)

  27. Humphreys, J.E.: Linear Algebraic Groups, GTM 21, Springer, New York (1975) (corrected 4th printing, 1995). 253 pp. +xvi

  28. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced in Mathematics 29, Cambridge Univ. Press, Cambridge, pp. 204+xii (1990)

  29. Kazhdan, D., Lusztig, G.: Schubert varieties and Poincaré duality. Proc. Symp. Pure Math. 36, 185–203 (1980)

    Article  MATH  Google Scholar 

  30. Kumar, S.: Kac–Moody groups, their flag varieties and representation theory. Progress in Math. 204, Birkhäuser, pp. 606+xiv (2002)

  31. Littelmann, P.: Contracting modules and standard monomial theory for symmetrizable Kac–Moody algebras. J. Am. Math. Soc. 11, 551–567 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lusztig, G.: Cells in affine Weyl groups and tensor categories. Adv. Math. 129, 85–98 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mathieu, O.: Formules de caractères pour les algèbres de Kac–Moody générales. Astérisque pp. 159–160 (1988)

  34. Mathieu, O.: Construction d’un groupe de Kac–Moody et applications. Compos. Math. 69(1), 37–60 (1989)

    MathSciNet  MATH  Google Scholar 

  35. Milne, J.S.: Étale Cohomology, Princeton Math. Series 33, Princeton Univ. Press, Princeton, pp. 323 + xiii (1980)

  36. Mumford, D.: Abelian Varieties. Oxford University Press, Oxford (1974)

    MATH  Google Scholar 

  37. Olsson, M.: Borel–Moore homology, Riemann–Roch transformations, and local terms. Adv. Math. 273, 56–123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pappas, G., Rapoport, M.: Twisted loop groups and their affine flag varieties. Adv. Math. 219(1), 118–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Richarz, T.: Schubert varieties in twisted affine flag varieties and local models. J. Algebra 375, 121–147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Slodowy, P.: Singularitäten, Kac–Moody-Liealgebren, Assoziierte Gruppen und Verallgemeinerungen. Universität Bonn, Habilitationsschrift (1984)

    Google Scholar 

  41. Springer, T.A.: A purity result for fixed point varieties in flag manifolds. J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 31, 271–282 (1984)

  42. Springer, T.A.: Linear Algebraic Groups, 2nd edn. Progress in Math. vol. 9, Birkhäuser (1998)

  43. Tits, J.: Définition par générators et relations de groups \(BN\)-paires. C. R. Acad. Sci. Paris 293, 317–322 (1981)

    MATH  Google Scholar 

  44. Tits, J.: Annuaire Collège de France 81, pp. 75–87 (1980–1981)

  45. Wilson, K.M., Jr.: A Tannakian description for parahoric Bruhat-Tits group schemes. Thesis (Ph.D.)-University of Maryland, College Park. pp. 112. ISBN: 978-1124-07345-3, ProQuest LLC (2010)

Download references

Acknowledgements

We gratefully acknowledge discussions with Patrick Brosnan, Pierre Deligne, Xuhua He, Robert Kottwitz, Mircea Mustaţă, George Pappas, Timo Richarz, Jason Starr, Geordie Williamson, and Zhiwei Yun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Haines.

Additional information

The research of M. A. de Cataldo was partially supported by NSF Grant DMS-1301761 and by a Grant from the Simons Foundation (\(\#\)296737 to Mark Andrea de Cataldo). The research of T. Haines was partially supported by NSF Grant DMS-1406787. The research of L. Li was partially supported by the Oakland University URC Faculty Research Fellowship Award.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Cataldo, M.A., Haines, T.J. & Li, L. Frobenius semisimplicity for convolution morphisms. Math. Z. 289, 119–169 (2018). https://doi.org/10.1007/s00209-017-1946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1946-4

Navigation