Skip to main content
Log in

\(\varvec{{\mathbb {Z}}_3}\)-orbifold construction of the Moonshine vertex operator algebra and some maximal 3-local subgroups of the Monster

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this article, we describe some maximal 3-local subgroups of the Monster simple group using vertex operator algebras (VOA). We first study the holomorphic vertex operator algebra obtained by applying the orbifold construction to the Leech lattice vertex operator algebra and a lift of a fixed-point free isometry of order 3 of the Leech lattice. We also consider some of its special subVOAs and study their stabilizer subgroups using the symmetries of the subVOAs. It turns out that these stabilizer subgroups are 3-local subgroups of its full automorphism group. As one of our main results, we show that its full automorphism group is isomorphic to the Monster simple group by using a 3-local characterization and that the holomorphic VOA is isomorphic to the Moonshine VOA. This approach allows us to obtain relatively explicit descriptions of two maximal 3-local subgroups of the shape \(3^{1+12}.2.{{\mathrm{Suz}}}{:}2\) and \(3^8.\Omega ^-(8,3).2\) in the Monster simple group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\langle \cdot ,\cdot \rangle \) :

The (normalized) invariant bilinear form on a VOA.

\(a_{n}\) :

The n-th mode of an element \(a\in V\).

\({{\mathrm{Aut}}}V\) :

The automorphism group of a VOA V.

\(C_G(H)\) :

The centralizer of a subgroup H in a group G.

G.H :

A group extension with normal subgroup G such that the quotient by G is H.

\(K_{12}\) :

The Coxeter–Todd lattice of rank 12.

\({\mathbb {M}}\) :

The Monster simple group.

\(N_G(H)\) :

The normalizer of a subgroup H in a group G.

\(\Omega ^-_8(3)\) :

The commutator subgroup of the orthogonal group of 8-dimensional quadratic space over \({\mathbb {F}}_3\) of minus type.

\(O_3(G)\) :

The maximal normal 3-subgroup of a finite group G.

O(L):

The automorphism group of L preserving the inner product \(\langle \cdot |\cdot \rangle \).

O(Rq):

The orthogonal group of the quadratic space R with quadratic form q.

\(\tau \) :

A fixed-point free automorphism of a lattice of order 3 or its lift to an automorphism of the lattice VOA of order 3.

\(\Lambda \) :

The Leech lattice.

R(V):

The set of isomorphism classes of irreducible V-modules.

\(V_L\) :

The lattice VOA associated to an even lattice L.

\(V_\Lambda ^\tau \) :

The fixed-point subspace of \(\tau \) in \(V_\Lambda \), a subVOA of \(V_\Lambda \).

\(V^\natural \) :

The Moonshine VOA.

\(V^\sharp \) :

The holomorphic VOA of central charge 24 constructed as in (3.1).

\({{\mathrm{wt}}}(M)\) :

The lowest L(0)-weight of an irreducible (g-twisted) module M.

\(\omega \) :

The conformal vector of a VOA.

W :

The \(\tau \)-fixed-point subspace \(V_{K_{12}}^\tau \) of the Lattice VOA \(V_{K_{12}}\) associated to \(K_{12}\)

\(\xi \) :

\(\exp (2\pi \sqrt{-1}/3)\).

Z(G):

The center of a finite group G.

\({\mathbb {Z}}_n\) :

The cyclic group of order n.

References

  1. Borcherds, R.E.: Vertex algebras, Kac–Moody algebras, and the Monster. Proc. Nat’l. Acad. Sci. USA 8(3), 3068–3071 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carpi, S., Kawahigashi, Y., Longo, R., Weiner, M.: From vertex operator algebras to conformal nets and back. Mem. Am. Math. Soc. arXiv:1503.01260

  3. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G, Thackray (1985)

  4. Chen, H., Lam, C.H.: Quantum dimensions and fusion rules of the VOA \( V^\tau _{{L_{{\varvec {{\cal{C}}}} \times {\varvec {{\cal{D}}}}}}}\). J. Algebra 459, 309–349 (2016)

    Article  MathSciNet  Google Scholar 

  5. Conway, J.H., Sloane, N.J.A.: The Coxeter–Todd lattice, the Mitchell group, and related sphere packings. Math. Proc. Camb. Philos. Soc. 9(3), 421–440 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong, C., Griess, R.L., Lam, C.H.: Uniqueness results for the moonshine vertex operator algebra. Am. J. Math. 129, 583–609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, C., Lepowsky, J.: The algebraic structure of relative twisted vertex operators. J. Pure Appl. Algebra 110, 259–295 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, C., Li, H., Mason, G.: Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Comm. Math. Phys. 214, 1–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, C., Lin, X.J.: Unitary vertex operator algebras. J. Algebra 397, 252–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, C., Mason, G.: The Construction of the Moonshine Module as a \(Z_p\)-Orbifold, Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992), Contemporay Mathematics, vol. 175. American Mathematical Society, Providence (1994)

    Google Scholar 

  11. Dong, C., Griess Jr., R.L.: Automorphism groups and derivation algebras of finitely generated vertex operator algebras. Mich. Math. J. 50, 227–239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frenkel, I.B., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104, viii+64 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, vol. 134. Academic Press, Boston (1988)

    MATH  Google Scholar 

  14. Huang, Y.Z., Kirillov Jr., A., Lepowsky, J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337, 1143–1159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kac, V.G., Raina, A.K., Rozhkovskaya, N.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, 2nd edn. Advanced Series in Mathematical Physics, 29. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2013)

  16. Kitazume, M., Lam, C.H., Yamada, H.: 3-State Potts model, Moonshine vertex operator algebra, and \(3A\)-elements of the Monster group. Int. Math. Res. Not 23, 1269–1303 (2003)

  17. Lam, C.H., Sakuma, S., Yamauchi, H.: Ising vectors and automorphism groups of commutant subalgebras related to root systems. Math. Z 255(3), 597–626 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lam, C.H., Yamauchi, H.: On 3-transposition groups generated by \(\sigma \)-involutions associated to \(c=4/5\) Virasoro vectors. J. Algebra 416, 84–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lepowsky, J.: Calculus of twisted vertex operators. Proc. Natl. Acad. Sci. USA 8(2), 8295–8299 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Algebra 9(6), 279–297 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miyamoto, M.: Griess algebras and conformal vectors in vertex operator algebras. J. Algebra 179, 523–548 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miyamoto, M.: A \({\mathbb{Z}}_3\)-Orbifold Theory of Lattice Vertex Operator Algebra and \({\mathbb{Z}}_3\)-Orbifold Constructions, Symmetries, Integrable Systems and representations, Springer Proceedings in Mathematics & Statistics, vol. 40. Springer, Heidelberg (2013)

    Google Scholar 

  23. Sakuma, S., Yamauchi, H.: Vertex operator algebra with two Miyamoto involutions generating \(S_3\). J. Algebra 267(1), 272–297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Salarian, M.R., Stroth, G.: An identification of the Monster group. J. Algebra 323(4), 1186–1195 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shimakura, H.: The automorphism group of the vertex operator algebra \(V_L^+\) for an even lattice \(L\) without roots. J. Algebra 280, 29–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shimakura, H.: Lifts of automorphisms of vertex operator algebras in simple current extensions. Math. Z. 256(3), 491–508 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shimakura, H.: An \(E_8\)-approach to the moonshine vertex operator algebra. J. Lond. Math. Soc. 83, 493–516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shimakura, H.: The automorphism group of the \({{\mathbb{Z}}}_2\)-orbifold of the Barnes–Wall lattice vertex operator algebra of central charge 32. Math. Proc. Camb. Philos. Soc. 156, 343–361 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tanabe, K., Yamada, H.: Fixed point subalgebras of lattice vertex operator algebras by an automorphism of order three. J. Math. Soc. Jpn. 6(5), 1169–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tits, J., Griess’, O.R.: Friendly giant. Invent. Math. 7(8), 491–499 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Xingjun Lin for helpful comments on unitary vertex algebras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsian-Yang Chen.

Additional information

C. H. Lam was partially supported by MoST Grant 104-2115-M-001-004-MY3 of Taiwan.

H. Shimakura was partially supported by JSPS KAKENHI Grant Numbers 26800001.

C. H. Lam and H. Shimakura were partially supported by JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers “Development of Concentrated Mathematical Center Linking to Wisdom of the Next Generation”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HY., Lam, C.H. & Shimakura, H. \(\varvec{{\mathbb {Z}}_3}\)-orbifold construction of the Moonshine vertex operator algebra and some maximal 3-local subgroups of the Monster. Math. Z. 288, 75–100 (2018). https://doi.org/10.1007/s00209-017-1878-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1878-z

Mathematics Subject Classification

Navigation