Skip to main content
Log in

Isoparametric foliations and critical sets of eigenfunctions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Jakobson and Nadirashvili (J Differ Geom 53(1):177–182, 1999) constructed a sequence of eigenfunctions on \(T^2\) with a bounded number of critical points, answering in the negative the question raised by Yau (Problem section, seminar on differential geometry. Princeton University Press, Princeton, 1982) which asks that whether the number of the critical points of eigenfunctions for the Laplacian increases with the corresponding eigenvalues. The present paper finds three interesting eigenfunctions on the minimal isoparametric hypersurface \(M^n\) in \(S^{n+1}(1)\). The corresponding eigenvalues are n, 2n and 3n, while their critical sets consist of 8 points, a submanifold (infinite many points) and 8 points, respectively. On one of its focal submanifolds, a similar phenomenon occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Added in proof. It was recently proved by Enciso and Peralta-Salas that on a compact manifold, there is a Riemannian metric such that the first nontrivial eigenfunction can have as many non-degenerate critical points as one wishes (bigger in particular than the Morse number of the manifold). Moreover, any other metric \(C^{\infty }\) close to it carries the same property(cf. [6]).

References

  1. Cecil, T.E., Chi, Q.-S., Jensen, G.R.: Isoparametric hypersurfaces with four principal curvatures. Ann. Math. 166, 1–76 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chi, Q.S.: Isoparametric hypersurfaces with four principal curvatures, III. J. Differ. Geom. 94, 469–504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chi, Q. S.: Isoparametric Hypersurfaces with Four Principal Curvatures, IV. arXiv: 1605.00976 (2016)

  4. Cecil, T.E., Ryan, P.T.: Tight and Taut Immersions of Manifolds. Research Notes in Mathematics, vol. 107. Pitman, London (1985)

    MATH  Google Scholar 

  5. Dorfmeister, J., Neher, E.: Isoparametric hypersurfaces, case \(g = 6\), \(m = 1\). Commun. Algebra 13, 2299–2368 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Enciso, A., Peralta-Salas, D.: Eigenfunctions with prescribed nodal sets. J. Differ. Geom. 101, 197–211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferus, D., Karcher, H., Münzner, H.F.: Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z. 177, 479–502. For an English version, see arXiv:1112.2780 (1981)

  8. Ge, J.Q., Tang, Z.Z.: Geometry of isoparametric hypersurfaces in Riemannian manifolds. Asian J. Math. 18, 117–126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ge, J.Q., Tang, Z.Z.: Isoparametric functions and exotic spheres. J. Reine Angew. Math. 683, 161–180 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Immervoll, S.: On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres. Ann. Math. 168, 1011–1024 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jakobson, D., Nadirashvili, N.: Eigenfunctions with few critical points. J. Differ. Geom. 53(1), 177–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Miyaoka, R.: Isoparametric hypersurfaces with \((g, m) = (6, 2)\). Ann. Math. 177, 53–110 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peng, C.K., Terng, C.L.: Minimal Hypersurfaces of Spheres with Constant Scalar Curvature. Ann. Math. Stud. No. 103, pp. 177–198. Princeton University Press, Princeton (1983)

  14. Qian, C., Tang, Z.Z.: Isoparametric foliations, a problem of Eells–Lemaire and conjectures of Leung. Proc. Lond. Math. Soc. 112, 979–1001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Solomon, B.: Quartic isoparametric hypersurfaces and quadratic forms. Math. Ann. 293, 387–398 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Thorbergsson, G.: A survey on isoparametric hypersurfaces and their generalizations. In: Handbook of Differential Geometry, vol. I, pp. 963–995. North-Holland, Amsterdam (2000)

  17. Tang, Z.Z., Xie, Y.Q., Yan, W.J.: Isoparametric foliation and Yau conjecture on the first eigenvalue, II. J. Funct. Anal. 266, 6174–6199 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang, Z.Z., Yan, W.J.: Isoparametric foliation and Yau conjecture on the first eigenvalue. J. Differ. Geom. 94, 521–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Uhlenbeck, K.: Generic properties of eigenfunctions. Am. J. Math. 98, 1059–1078 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Q.M.: Isoparametric functions on Riemannian manifolds. I. Math. Ann. 277, 639–646 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yau, S.-T.: Problem Section, Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 669–706. Princeton University Press, Princeton (1982)

  22. Yau, S.-T.: A Note on the Distribution of Critical Points of Eigenfunctions. Tsing Hua Lectures in Geometry and Analysis, pp. 315–317. International Press, Cambridge (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjiao Yan.

Additional information

The project is partially supported by the NSFC (Nos. 11331002, 11301027) and SRFDP (No. 20130003120008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Yan, W. Isoparametric foliations and critical sets of eigenfunctions. Math. Z. 286, 1217–1226 (2017). https://doi.org/10.1007/s00209-016-1798-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1798-3

Keywords

Mathematics Subject Classification

Navigation