Skip to main content
Log in

Rigidity for \(C^1\) actions on the interval arising from hyperbolicity I: solvable groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider Abelian-by-cyclic groups for which the cyclic factor acts by hyperbolic automorphisms on the Abelian subgroup. We show that if such a group acts faithfully by \(C^1\) diffeomorphisms of the closed interval with no global fixed point at the interior, then the action is topologically conjugate to that of an affine group. Moreover, in case of non-Abelian image, we show a rigidity result concerning the multipliers of the homotheties, despite the fact that the conjugacy is not necessarily smooth. Some consequences for non-solvable groups are proposed. In particular, we give new proofs/examples yielding the existence of finitely-generated, locally-indicable groups with no faithful action by \(C^1\) diffeomorphisms of the interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Some of the results of this work strongly complements this. For instance, as we state below, the semiconjugacy is necessarily a (topological) conjugacy, which means that the semiconjugating map is actually a homeomorphism.

  2. Recall that a group is said to be locally indicable if every nontrivial, finitely-generated subgroup has a surjective homomorphism onto \(\mathbb Z\). Every such group admits a faithful action by homeomorphisms of the interval provided it is countable; see [29].

  3. Actually, they should be \(C^{1+\tau }\)-smoothable in case of polynomial growth, with \(\tau \) depending on the degree of the polynomial; see [10, 12, 21, 26].

  4. In general, the conjugacy above is not smooth at the endpoints even in the real-analytic case: see [7] for a very complete discussion on this.

  5. This is well-known and follows from the unique ergodicity of a together with that the mean of \(\log (Da)\) with resepect to the unique invariant probability measure equals zero; see [20, Proposition I.I, Chapitre VI].

References

  1. Asaoka, M.: Rigidity of certain solvable actions on the sphere. Geom. Topol. 16, 1835–1857 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bieri, R., Strebel, R.: Almost finitely presented solvable groups. Comment. Math. Helvetici 53, 258–278 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bleak, C.: An algebraic classification of some solvable groups of homeomorphisms. J. Algebra 319(4), 1368–1397 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonatti, C.: Feuilletages proches d’une fibration. Braz. Math. Society, Ensaios Matemáticos (1993)

  5. Bonatti, C.: Un point fixe commun pour des difféomorphismes commutants de \({\rm S}^2\). Ann. Math. 129, 61–69 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonatti, C., Guelman, N.: Smooth conjugacy classes of circle diffeomorphisms with irrational rotation number. Fund. Math. 227, 129–162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burslem, L., Wilkinson, A.: Global rigidity of solvable group actions on \({\rm S}^1\). Geom. Topol. 8, 877–924 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calegari, D.: Nonsmoothable, locally indicable group actions on the interval. Algebr. Geom. Topol. 8(1), 609–613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cantwell, J., Conlon, L.: An interesting class of \(C^1\) foliations. Topol. Appl. 126(1–2), 281–297 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, G., Jorquera, E., Navas, A.: Sharp regularity for certain nilpotent group actions on the interval. Math. Ann. 359, 101–152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, S.: The group of translations and positive rational powers is free. Quart. J. Math. Oxford Ser. 46(181), 21–93 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deroin, B., Kleptsyn, V., Navas, A.: Sur la dynamique unidimensionnelle en régularité intermediaire. Acta Math. 199, 199–262 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farb, B., Franks, J.: Groups of homeomorphisms of one-manifolds III: nilpotent subgroups. Ergodic Theory Dyn. Syst. 23(5), 1467–1484 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Farb, B., Mosher, L.: Quasi-isometric rigidity of the solvable Baumslag–Solitar groups, II. Invent. Math. 137, 613–649 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fathi, A., Herman, M.: Existence de difféomorphismes minimaux. Dynamical systems, Vol. I Warsaw. Astérisque 49, Soc. Math. France, Paris (1977), 37–59

  16. Fayad, B., Katok, A.: Constructions in elliptic dynamics. Ergodic Theory Dynam. Syst. 24, 1477–1520 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghys, É.: Sur les groupes engendrés par des difféomorphismes proches de l’identitité. Bull. Soc. Bras. Mat. 24(4), 137–178 (1993)

    Article  MATH  Google Scholar 

  18. Ghys, É., Sergiescu, V.: Sur un groupe remarquable de difféomorphismes du cercle. Comment. Math. Helv. 62, 185–239 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guelman, N., Liousse, I.: \(C^1\)-actions of Baumslag–Solitar groups on \({\rm S}^1\). Algebr. Geom. Topol. 11, 1701–1707 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Herman, M.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. l’IHÉS 49, 5–233 (1979)

    Article  MATH  Google Scholar 

  21. Jorquera, E., Navas, A., Rivas, C.: Sharp regularity for arbitrary actions of nilpotent groups on the interval: the case of \(N_4\). Ergodic Theory Dynam. Systems (to appear)

  22. Kodama, H., Matsumoto, S.: Minimal \(C^1\)-diffeomorphisms of the circle which admit measurable fundamental domains. Proc. AMS 141(6), 2061–2067 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. McCarthy, A.: Rigidity of trivial actions of abelian-by-cyclic groups. Proc. Am. Math. Soc. 138(4), 1395–1403 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Muller, M.: Sur l’approximation et l’instabilité des feuilletages. Unpublished text (1982)

  25. Navas, A.: Sur les rapprochements par conjugaison en dimension 1 et classe \(C^1\). Compos. Math. 150, 1183–1195 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Navas, A.: On centralizers of interval diffeomorphisms in critical (intermediate) regularity. J. d’Anal. Math. 121, 21–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Navas, A.: Groups of circle diffeomorphisms. Chicago Lect. Math., University of Chicago Press (2011)

  28. Navas, A.: A finitely generated, locally indicable group with no faithful action by \(C^1\) diffeomorphisms of the interval. Geom. Topol. 14, 573–584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Navas, A.: On the dynamics of left-orderable groups. Ann. Inst. Fourier (Grenoble) 60(5), 1685–1740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Navas, A.: Growth of groups and diffeomorphisms of the interval. Geom. Funct. Anal. 18(3), 988–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Navas, A.: Groupes résolubles de difféomorphismes de l’intervalle, du cercle et de la droite. Bull. Braz. Math. Soc. 35(1), 13–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Navas, A.: Quelques groupes moyennables de difféomorphismes de l’intervalle. Bol. Soc. Mat. Mex. 10, 219–244 (2004)

    Google Scholar 

  33. Pixton, D.: Nonsmoothable, unstable group actions. Trans. AMS 229, 259–268 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  34. Plante, J.: On solvable groups acting on the real line. Trans. AMS 278, 401–414 (1983)

    Article  MATH  Google Scholar 

  35. Rivas, C.: On spaces of Conradian group orderings. J. Gr. Theory 13(3), 337–353 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Shinohara, K.: On the minimality of semigroup actions on the interval which are \(C^1\)-close to the identity. Proc. Lond. Math. Soc. 109, 1175–1202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shub, M., Sullivan, D.: Expanding endomorphisms of the circle revisited. Ergodic Theory Dynam. Syst. 5, 285–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Thurston, W.: A generalization of the Reeb stability theorem. Topology 13, 347–352 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tsuboi, T.: Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle. J. Math. Soc. Japan 47(1), 1–30 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tsuboi, T.: \(G_1\)-structures avec une seule feuille. Asterisque 116, 222–234 (1984)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank L. Arenas and A. Zeghib for useful discussions related to Sects. 5 and 1.3, S. Matsumoto and A. Wilkinson for their interest on this work, and the anonymous referee for pointing out to us an error in the original version of this work as well as several points to improve. All the authors were funded by the Center of Dynamical Systems and Related Fields  (Anillo Project 1103, CONICYT), and would also like to thank UCN for the hospitality during the VIII Dynamical Systems School held at San Pedro de Atacama (July 2013), where this work started taking its final form. C. Bonatti would like to thank Chicago University for its hospitality during the stay which started his interest on this subject. I. Monteverde would like to thank Univ. of Santiago for the hospitality during his stay in July 2013, and acknowledges the support of PEDECIBA Matemática, Uruguay. A. Navas would like to thank Univ. of Bourgogne for the hospitality during different stages of this work, and acknowledges the support of the FONDECYT Project 1120131. C. Rivas acknowledges the support of the CONICYT Inserción Project 79130017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rivas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonatti, C., Monteverde, I., Navas, A. et al. Rigidity for \(C^1\) actions on the interval arising from hyperbolicity I: solvable groups. Math. Z. 286, 919–949 (2017). https://doi.org/10.1007/s00209-016-1790-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1790-y

Keywords

Mathematics Subject Classification

Navigation