Skip to main content
Log in

Movement of time-delayed hot spots in Euclidean space

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We investigate the shape of the solution of the Cauchy problem for the damped wave equation. In particular, we study the existence, location and number of spatial maximizers of the solution. Studying the shape of the solution of the damped wave equation, we prepare a decomposed form of the solution into the heat part and the wave part. Moreover, as its another application, we give \(L^p\)-\(L^q\) estimates of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cattaneo, C.R.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C. R. 247(4), 431–433 (1958)

    MathSciNet  Google Scholar 

  2. Chester, M.: Second sound in solid. Phys. Rev. 131(15), 2013–2015 (1963)

    Article  Google Scholar 

  3. Chavel, I., Karp, L.: Movement of hot spots in Riemannian manifolds. J. Anal. Math. 55, 271–286 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Courant, R., Hilbert, D.: Methods of Mathematical Physics II. Wiley, New York (1989)

    Book  MATH  Google Scholar 

  5. Fulks, W., Guenther, R.B.: Damped wave equations and the heat equation. Czechoslov. Math. J. 21, 683–695 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fujishima, Y., Ishige, K.: Blow-up for a semilinear parabolic equation with large diffusion on \(\mathbb{R}^N\). J. Differ. Equ. 250, 2508–2543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fujishima, Y., Ishige, K.: Blow-up for a semilinear parabolic equation with large diffusion on \(\mathbb{R}^N\) II. J. Differ. Equ. 252, 1835–1861 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giga, M.-H., Giga, Y., Saal, J.: Nonlinear Partial Differential Equations, Progress in Nonlinear Differential Equations and Their Applications, vol. 79. Birkhäuser, Boston (2010)

    MATH  Google Scholar 

  9. Hosono, T., Ogawa, T.: Large time behavior and \(L^p\)-\(L^q\) estimate of solutions of 2-dimensional nonlinear damped wave equations. J. Differ. Equ. 203, 82–118 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ikehata, R., Nishihara, K., Zhao, H.: Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption. J. Differ. Equ. 226, 1–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ishige, K.: Movement of hot spots on the exterior domain of a ball under the Neumann boundary condition. J. Differ. Equ. 212, 394–431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ishige, K.: Movement of hot spots on the exterior domain of a ball under the Dirichlet boundary condition. Adv. Differ. Equ. 12, 1135–1166 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Ishige, K., Kabeya, Y.: Large time behaviors of hot spots for the heat equation with a potential. J. Differ. Equ. 244, 2934–2962 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jimbo, S., Sakaguchi, S.: Movement of hot spots over unbounded domains in \(\mathbb{R}^N\). J. Math. Anal. Appl. 182, 810–835 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, T.-T.: Nonlinear heat conduction with finite speed of propagation. In: China–Japan Symposium on Reaction-Diffusion Equations and their Applications and Computational Aspects (Shanghai, 1994), pp. 81–91. World Scientific Publishing Co. Inc., River Edge (1997)

  16. Marcati, P., Nishihara, K.: The \(L^p\)-\(L^q\) estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media. J. Differ. Equ. 191, 445–469 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Morse, P.M., Feshbach, H.: Method of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  18. Narazaki, T.: \(L^p\)-\(L^q\) estimates for damped wave equations and their applications to semi-linear problem. J. Math. Soc. Jpn. 56, 585–626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nikiforov, A., Ouvarov, V.: Éléments de la théorie des fonctions spéciales (French translation). Nauka, Moscow (1974)

    Google Scholar 

  20. Nishihara, K.: \(L^p\)-\(L^q\) estimates of solutions to the damped wave equation in 3-dimensional space and their application. Math. Z. 244, 631–649 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sakata, S.: Movement of centers with respect to various potentials. Trans. Am. Math. Soc. 367, 8347–8381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vernotte, P.: Les paradoxes de la théorie continue de l’équation de la chaleur. C. R. 246(22), 3154–3155 (1958)

    MathSciNet  MATH  Google Scholar 

  23. Yang, H., Milani, A.: On the diffusion phenomenon of quasilinear hyperbolic waves. Bull. Sci. Math. 124, 415–433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their deep gratitude to Professor Tatsuo Nishitani and Professor Jun O’Hara for giving them valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehiro Sakata.

Additional information

S. Sakata is partially supported by Waseda University Grant for Special Research Project 2014S-175 and JSPS Kakenhi Grant Number 26887041. Y. Wakasugi is partially supported by JSPS Kakenhi Grant Number 15J01600.

Appendix

Appendix

1.1 Proofs of preliminary estimates

Proof of Lemma 3.1

Let us give a proof for even dimensional cases. The other cases go parallel.

Changing the variable as \(y=x+tz\) with \(z \in B^n\), we have

$$\begin{aligned} \int _{B_t^n(x)} \frac{1}{\sqrt{t^2-r^2}} g(y) dy = t^{n-1} \int _{B^n} \frac{1}{\sqrt{1-\left| z \right| ^2}} g(x+tz) dz. \end{aligned}$$

When we estimate the function

$$\begin{aligned} {\varvec{W}}_n(t)g(x)&=2c_n \sum _{j=0}^{(n-2)/2} \frac{1}{8^j j !}\left( \frac{1}{t} \frac{\partial }{\partial t} \right) ^{(n-2)/2-j} \left( t^{n-1} \int _{B^n} \frac{1}{\sqrt{1-\left| z \right| ^2}} g(x+tz) dz \right) , \end{aligned}$$

the worst term with respect to the growth order of t is given by \(j= (n-2)/2\). We can bound it above by \(C(1+t)^{n-1} \Vert g \Vert _{L^\infty }\). Furthermore, we can bound the term of \(j =0\) above by \(C (1+t)^{n/2} \Vert g \Vert _{W^{n/2-1 ,\infty }}\). The other terms are bounded above by these two quantities (up to a constant multiple). Hence we obtain the estimate for \({\varvec{W}}_n(t)g(x)\).

From Proposition 2.8, we have

$$\begin{aligned} \widehat{{\varvec{W}}}_n(t) f(x) = \frac{c_n t^n}{2^{\frac{3n-2}{2}}\left( \frac{n}{2} \right) !} \int _{B^n} \frac{1}{\sqrt{1-\left| z \right| ^2}} f(x+tz) dz, \end{aligned}$$

which implies the estimate for \(\widehat{{\varvec{W}}}_n(t) f(x)\). Also, we have

$$\begin{aligned} \widetilde{{\varvec{W}}}_n(t;f,g) (x) = \frac{1}{2} {\varvec{W}}_n (t) f(x) + {\varvec{W}}_n (t) g(x) + \widehat{{\varvec{W}}}_n(t) f(x) + \frac{\partial }{\partial t} {\varvec{W}}_n(t)f(x). \end{aligned}$$

Combining the above estimates for \({\varvec{W}}_n(t)g(x)\) and \(\widehat{{\varvec{W}}}_n(t) f(x)\), we obtain the conclusion.

\(\square \)

Proof of Lemma 3.2

Using Remark 2.5, integration by parts implies the identities. \(\square \)

Proof of Lemma 3.3

If \({{\mathrm{dist}}}(x, CS (h) ) \le t-d_h\) and \(t\ge d_h\), then the intersection \(S^{n-1}_t(x) \cap CS(h)\) is a null set with respect to the \((n-1)\)-dimensional spherical Lebesgue measure. Hence Lemma 3.2 guarantees the conclusion.

Proof of Lemma 3.4

  1. 1.

    We give a proof for even dimensional cases. The other cases go parallel. We remark that, from the definition of \(c_n\) (2.3), we have

    $$\begin{aligned} E_n (r,t) = \frac{e^{-t/2}}{2^{3n/2+1}\pi ^{n/2}} k_{\frac{n}{2}+1}\left( \frac{1}{2}\sqrt{t^2-r^2} \right) . \end{aligned}$$

    From Theorem 2.4, we have

    $$\begin{aligned}&k_{\frac{n}{2}+1} \left( \frac{1}{2} \sqrt{t^2 -\varphi (t)^2} \right) \\&= \frac{1}{2} \left( \frac{2}{\sqrt{t^2 -\varphi (t)^2}} \right) ^{n/2+1} \exp \left( \frac{\sqrt{t^2 -\varphi (t)^2}}{2} \right) \left( 1+ O \left( \frac{1}{\sqrt{t^2 -\varphi (t)^2}} \right) \right) \end{aligned}$$

    as t goes to infinity, which implies the conclusion.

  2. 2.

    Applying the fact (5.11) to the first assertion, we obtain the conclusion.

  3. 3.

    Applying the fact (5.12) to the second assertion, we obtain the conclusion.

Proof of Lemma 3.5

Using Remark 2.5, integration by parts implies the identities. \(\square \)

Proof of Lemma 3.6

  1. 1.

    This is a direct consequence of (5.8) in Lemma 5.2.

  2. 2.

    We give a proof for even dimensional cases. The other cases go parallel. From the asymptotic expansion in Theorem 2.4, we have

    $$\begin{aligned}&e^{-t/2} \left( t k_{\frac{n}{2}+2} \left( \frac{1}{2} \sqrt{t^2 -r^2} \right) -2 k_{\frac{n}{2}+1} \left( \frac{1}{2} \sqrt{t^2 -r^2} \right) \right) \\&=\frac{2^{n/2+1}}{\left( t^2 -r^2 \right) ^{n/4+1/2}} \exp \left( \frac{-t+\sqrt{t^2 -r^2}}{2} \right) \\&\quad \times \left[ \frac{t}{\sqrt{t^2 -r^2}} \left( 1+ O \left( \frac{1}{\sqrt{t^2-r^2}} \right) \right) - \left( 1+ O \left( \frac{1}{\sqrt{t^2-r^2}} \right) \right) \right] . \end{aligned}$$

    Using the facts (5.11) and (5.12), the above expansion coincides with

    $$\begin{aligned} 2^{n/2+1} t^{-n/2-1} \left( O \left( \frac{1}{t} \right) + O \left( \frac{\psi (t)^2}{t^2} \right) \right) , \end{aligned}$$

    which implies the conclusion.

  3. 3.

    Using the asymptotic expansion in Theorem 2.4, in the same manner as in the second assertion, we obtain the conclusion.

\(\square \)

1.2 Frequently used Taylor’s expansions

Let us list up frequently used Taylor’s expansions:

  • As s tends to zero, we have

    $$\begin{aligned} (1-s^2)^\alpha = 1 - \alpha s^2 + \frac{\alpha (\alpha -1)}{2} s^4 + O \left( s^6 \right) . \end{aligned}$$
    (5.10)
  • If a function \(\varphi (t)\) is of small order of t as t goes to infinity, then we have

    $$\begin{aligned} \begin{aligned}&\left( t^2-\varphi (t)^2 \right) ^\alpha \\&\quad = t^{2\alpha } \left( 1 -\alpha \left( \frac{\varphi (t)}{t} \right) ^2 + \frac{\alpha (\alpha -1)}{2} \left( \frac{\varphi (t)}{t} \right) ^4 + O\left( \left( \frac{\varphi (t)}{t} \right) ^6 \right) \right) \end{aligned} \end{aligned}$$
    (5.11)

    as t goes to infinity.

  • If a function \(\varphi (t)\) is of small order of \(\sqrt{t}\) as t goes to infinity, then, as t goes to infinity, we have the following expansions:

    $$\begin{aligned}&\exp \left( \frac{-t+\sqrt{t^2-\varphi (t)^2}}{2} \right) = 1 - \frac{\varphi (t)^2}{4t} + O\left( \frac{\varphi (t)^4}{t^2} \right) , \end{aligned}$$
    (5.12)
    $$\begin{aligned}&\exp \left( \frac{\varphi (t)^2}{4t}+\frac{-t+\sqrt{t^2-\varphi (t)^2}}{2} \right) = 1 + \frac{1}{t}O\left( \frac{\varphi (t)^4}{t^2} \right) . \end{aligned}$$
    (5.13)

1.3 Properties of modified Bessel functions

In this section, we collect some properties of the modified Bessel functions

$$\begin{aligned} I_{\nu }(s)=\sum _{j=0}^\infty \frac{1}{j ! \Gamma (j+\nu +1)} \left( \frac{s}{2}\right) ^{2j+\nu } \end{aligned}$$
(5.14)

used in this paper from [19]:

  • For a positive constant a, we have

    $$\begin{aligned} \int _{-a}^a\frac{e^{s/2}}{\sqrt{a^2-s^2}}ds=\pi I_0\left( \frac{a}{2}\right) . \end{aligned}$$
    (5.15)
  • Direct computation shows the following recursion:

    $$\begin{aligned} I_0^{\prime } (s)=I_1(s), \ I_1^{\prime }(s)=I_0(s)-\frac{1}{s}I_1(s), \ \frac{1}{s} \frac{d}{ds}\left( \frac{I_\ell (s)}{s^\ell } \right) =\frac{I_{\ell +1}(s)}{s^{\ell +1}}. \end{aligned}$$
    (5.16)
  • The modified Bessel function \(I_\nu (s)\) has the expansion

    $$\begin{aligned} \begin{aligned} I_\nu (s)&=\frac{e^s}{\sqrt{2\pi s}} \left( 1-\frac{(\nu -1/2)(\nu +1/2)}{2s} \right. \\&\quad \left. +\,\frac{(\nu -1/2)(\nu -3/2)(\nu +3/2)(\nu +1/2)}{2!2^2s^2} -\cdots \right. \\&\quad \left. +\,(-1)^\ell \frac{1}{\ell !2^\ell s^\ell } \prod _{j=1}^{\ell } \left( \nu -(j-1/2) \right) \left( \nu +(j-1/2)\right) +O\left( \frac{1}{s^{\ell +1}} \right) \right) \end{aligned} \end{aligned}$$
    (5.17)

    as s goes to infinity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakata, S., Wakasugi, Y. Movement of time-delayed hot spots in Euclidean space. Math. Z. 285, 1007–1040 (2017). https://doi.org/10.1007/s00209-016-1735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1735-5

Keywords

Mathematics Subject Classification

Navigation