Skip to main content
Log in

Log-Sobolev inequalities for semi-direct product operators and applications

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we prove some type of logarithmic Sobolev inequalities (with parameters) for operators in semi-direct product forms (see Sect. 1 for a precise definition). This generalizes the tensorization procedure for this type of inequalities and allows to deal with some operators with varying coefficients. We provide many examples of applications and obtain ultracontractive bounds for some of these operators by using appropriate Hardy’s type inequalities necessary for our method. This theory is developed in the setting of carré du champ with diffusion property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques (French) [Logarithmic sobolev inequalities]. In: Panoramas et Synthèses [Panoramas and Syntheses], vol. 10. Société Mathématique de France, Paris (2000)

  2. Anker, J.-P., Damek, E., Yacoub, C.: Spherical analysis on harmonic AN groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 643–679 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Anker, J.-P., Pierfelice, V., Vallarino, M.: Schrödinger equations on Damek–Ricci spaces. Commun. Part. Differ. Equ. 36, 976–997 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakry, D., Concordet, D., Ledoux, M.: Optimal heat kernel bounds under logarithmic Sobolev inequalities. ESAIM Probab. Stat. 1, 391–407 (1995/1997) (electronic)

  5. Bakry, D.: Functional inequalities for Markov semigroups. In: Dani, S.G., Graczyk, P. (eds.) Probability Measures on Groups: Recent Directions and Trends, pp. 91–147. Tata Inst. Fund. Res., Mumbai (2006)

  6. Beckner, W.: On the Grushin operator and hyperbolic symmetry. Proc. Am. Math. Soc. 129(4), 1233–1246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale (French) [Asymptotic expansion of the hypoelliptic heat kernel on the diagonal]. Ann. Inst. Fourier 39(1), 73–99 (1989)

    Article  MathSciNet  Google Scholar 

  8. Bendikov, A.D.: Symmetric stable semigroups on the infinite dimensional torus. Expo. Math. 13, 39–80 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Bieske, T., Gong, J.: The \(P\)-Laplace equation on a class of Grushin-type spaces. Proc. Am. Math. Soc. 134(12), 3585–3594 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calin, O., Chang, D.-C., Furutani, K., Iwasaki, C.: Heat kernels for elliptic and sub-elliptic operators. Methods and techniques. In: Applied and Numerical Harmonic Analysis. Springer, New York (2011)

  11. Carlen, E.A.: Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal. 101(1), 194–211 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cassano, B., D’Ancona, P.: Scattering in the energy space for the NLS with variable coefficients. Math. Ann. arXiv.1502.00937 (to appear)

  13. Coulhon, T., Grigor’yan, A., Levin, D.: On isoperimetric profiles of product spaces. Commun. Anal. Geom. 11(1), 85–120 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Ancona, P., Pierfelice, V.: On the wave equation with a large rough potential. J. Funct. Anal. 227, 30–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davies, E.B.: Heat Kernels and Spectral Theory, vol. 92. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  16. Damek, E., Ricci, F.: A class of nonsymmetric harmonic Riemannian spaces. Bull. Am. Math. Soc. 27, 139–142 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Émery, M., Yukich, J.E.: A simple proof of the logarithmic Sobolev inequality on the circle. In: Azéma, J., Yor, M., Meyer, P.A. (eds.) Séminaire de Probabilités, vol. XXI, pp. 173–175, Lecture Notes in Mathematics, no. 1247, Springer, Berlin (1987)

  18. Florchinger, P., Léandre, R.: Estimation de la densité d’une diffusion très dégénérée. étude d’un exemple (French) [Estimation of the density of a very degenerate diffusion. Study of an example]. J. Math. Kyoto Univ. 33(1), 115–142 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Gentil, I.: Inégalités de Sobolev logarithmique et de Poincaré pour la loi uniforme. Unpublished note (2004). http://math.univ-lyon1.fr/~gentil/maths.html#Note

  20. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gross, L.: Logarithmic Sobolev Inequalities and Contractivity Properties of Semigroups. Dirichlet Forms (Varenna, 1992), pp. 54–88, Lecture Notes in Mathematics no. 1563, Springer, Berlin (1993)

  22. Hebisch, W.: Spectral multipliers on metabelian groups. Rev. Mat. Iberoam. 16(3), 597–604 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lepingle, D.: On Logarithmic Sobolev Inequalities on a Bounded Interval. Unpublished note. http://www.univ-orleans.fr/mapmo/membres/lepingle/logsob

  24. Mueller, C.E., Weissler, F.B.: Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the \(n\)-sphere. J. Funct. Anal. 48(2), 252–283 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7, 447–526 (1982)

    Article  MATH  Google Scholar 

  26. Varopoulos, N.T., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  27. Wang, F.-Y.: Functional Inequalities, Markov Processes and Spectral Theory. Science Press, Beijing (2004)

    Google Scholar 

  28. Wang, F.-Y.: Nash and log-Sobolev inequalities for hypoelliptic operators. Manuscr. Math. 128(3), 343–358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weissler, F.B.: Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal. 37, 218–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Research partially supported by the ANR project “Harmonic Analysis at its boundaries”. ANR-12-BS01-0013-01. Patrick Maheux benefited from two sabbatical leaves: one semester of Délégation from the CNRS (2011) and one semester of CRCT from the University of Orléans (2012), France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero d’Ancona.

Appendix: Hardy type lemmas

Appendix: Hardy type lemmas

This “Appendix” is devoted to the proof of the lemmas stated and used in Sect. 5.

1.1 Proof of Lemma 5.2

Since

$$\begin{aligned} \left\| \frac{\partial f}{\partial x} \right\| _{L^{2}\left( \mathbb {R}^{2}\right) }\le \Vert \nabla _\mathcal{L} f\Vert _{L^{2}\left( \mathbb {R}^{2}\right) }, \end{aligned}$$

we see that it is sufficient to prove the one dimensional estimate

$$\begin{aligned} \int _{\mathbb {R}} \left( -\ln \vert x\vert \right) f^2(x) dx \le t \left\| f^{\prime }\right\| _{2}^{2} + \frac{1}{2} \ln \left( 2et^{-1}\right) \vert \vert f\vert \vert ^2_2,\quad t>0. \end{aligned}$$
(6.40)

where the norms are now in \(L^{2}(\mathbb {R})\). The proof of (6.40) will descend from the following proposition:

Proposition 5.4

For all \(0<\delta \le 1\)

$$\begin{aligned} \int _{0}^{1}- \ln x\cdot |f|^{2}dx\le |\ln \delta |\cdot \Vert f\Vert ^{2}_{L^{2}(0,1)} +\Vert f\Vert ^{2}_{L^{2}(0,\delta )} +\frac{2 \delta }{e}\Vert f\Vert _{L^{2}(0,\delta )}\Vert f^{\prime }\Vert _{L^{2}(0,\delta )}. \end{aligned}$$
(6.41)

Proof

It is sufficient to prove the estimate for a smooth function f. We have the identity

$$\begin{aligned} \int _{0}^{1}(-\ln x)|f|^{2}dx =\int _{0}^{1}(-\ln x)\frac{d}{dx}\int _{0}^{x}|f|^{2} =\int _{0}^{1}\frac{1}{x}\int _{0}^{x}|f|^{2}+ \left. (-\ln x)\int _{0}^{x}|f|^{2}\right| _{0}^{1} \end{aligned}$$

and we notice that the last boundary term vanishes. We estimate the remaining integral at the r.h.s. as follows. The piece of the integral with \(\delta \le x\le 1\) is bounded by

$$\begin{aligned} \int _{\delta }^{1}\frac{1}{x}\int _{0}^{x}|f|^{2}d\xi dx\le \Vert f\Vert ^{2}_{L^{2}(0,1)}\int _{\delta }^{1}\frac{1}{x} dx= \Vert f\Vert ^{2}_{L^{2}(0,1)}\cdot |\ln \delta |. \end{aligned}$$
(6.42)

On the other hand, an integration by parts gives:

$$\begin{aligned} \begin{aligned} \int _{0}^{\delta }\frac{1}{x} \int _{0}^{x}|f|^{2}d\xi dx&= \int _{0}^{\delta }\frac{1}{x} \int _{0}^{x}\xi ^{\prime }|f|^{2}d\xi dx= \int _{0}^{\delta }\frac{1}{x} \left[ -\int _{0}^{x}2\xi ff^{\prime } d\xi + \left. \xi |f|^{2}\right| _{0}^{x} \right] dx\\&=\int _{0}^{\delta }\int _{0}^{x} \left( -\frac{2\xi }{x}\right) ff^{\prime }d\xi dx +\int _{0}^{\delta }|f|^{2}dx. \end{aligned} \end{aligned}$$
(6.43)

Now we notice that

$$\begin{aligned} \begin{aligned} \int _{0}^{\delta }\int _{0}^{x} \left( -\frac{2\xi }{x}\right) ff^{\prime }d\xi dx&= \int _{0}^{\delta }\int _{\xi }^{\delta } \left( -\frac{2\xi }{x}\right) ff^{\prime } dx d\xi \\&= - 2\int _{0}^{\delta } ff^{\prime } \left( \xi \ln \frac{\delta }{\xi }\right) d\xi . \end{aligned} \end{aligned}$$

The function \(\xi \ln (\delta /\xi )\) is non negative on \([0,\delta ]\) and vanishes at the boundary; its maximum is at \(\xi =\delta /e\) so that

$$\begin{aligned} \left| \xi \ln \frac{\delta }{\xi }\right| \le \frac{\delta }{e}. \end{aligned}$$

This implies

$$\begin{aligned} \left| \int _{0}^{\delta }\int _{0}^{x} \left( -\frac{2\xi }{x}\right) f f^{\prime } d\xi dx\right| \le \frac{2 \delta }{e} \Vert f\Vert _{L^{2}(0,\delta )}\Vert f^{\prime }\Vert _{L^{2}(0,\delta )} \end{aligned}$$

and by (6.43)

$$\begin{aligned} \int _{0}^{\delta }\frac{1}{x} \int _{0}^{x}|f|^{2}d\xi dx\le \frac{2 \delta }{e} \Vert f\Vert _{L^{2}(0,\delta )}\Vert f^{\prime }\Vert _{L^{2}(0,\delta )} +\Vert f\Vert ^{2}_{L^{2}(0,\delta )}. \end{aligned}$$

Putting this estimate together with (6.42) we obtain (6.41). \(\square \)

Now, we are in position to prove Lemma 5.2. By changing f(x) by \(f(-x)\), we get from (6.41)

$$\begin{aligned} \int _{-1}^{0}- \ln \vert x\vert \cdot |f|^{2}dx\le |\ln \delta |\cdot \Vert f\Vert ^{2}_{L^{2}(-1,0)} +\Vert f\Vert ^{2}_{L^{2}(-\delta ,0)} +\frac{2 \delta }{e}\Vert f\Vert _{L^{2}(-\delta ,0)}\Vert f^{\prime }\Vert _{L^{2}(-\delta ,0 )}. \end{aligned}$$
(6.44)

By the inequality \(2ab\le \frac{1}{s} a^2+sb^2\) valid for any \(s>0\), we deduce

$$\begin{aligned} 2\Vert f\Vert _{L^{2}(-\delta ,0)}\Vert f^{\prime }\Vert _{L^{2}(-\delta ,0 )} + 2\Vert f\Vert _{L^{2}(0,\delta )}\Vert f^{\prime }\Vert _{L^{2}(0,\delta )} \le \frac{1}{s} \Vert f'\Vert ^{2}_{L^{2}(-\delta ,\delta )} +s\Vert f\Vert ^{2}_{L^{2}(-\delta ,\delta )}. \end{aligned}$$

By summing up with (6.41), for any \(s>0\) and \(\delta \in (0,1]\), we have

$$\begin{aligned} \int _{\mathbb R}- \ln \vert x\vert \cdot |f|^{2}dx\le \int _{-1}^{1}- \ln \vert x\vert \cdot |f|^{2}dx\le \frac{ \delta }{e s} \Vert f^{\prime }\Vert ^{2}_2 + \left( |\ln \delta |+ \frac{ s\delta }{e}+1\right) \Vert f\Vert ^{2}_2. \end{aligned}$$

We have obtained an inequality of the form

$$\begin{aligned} \int _{\mathbb R}- \ln \vert x\vert \cdot |f|^{2}dx\le c_1 \Vert f^{\prime }\Vert ^{2}_2 + c_2 \Vert f\Vert ^{2}_2 \end{aligned}$$

with \(c_i>0\). Here, we use a dilation argument by applying this inequality to the rescaled function

$$\begin{aligned} f(x)=g\left( x \sqrt{t/c_1}\right) ,\quad t>0, \end{aligned}$$

and we obtain

$$\begin{aligned} \int _{\mathbb R}- \ln \vert x\vert \cdot |f|^{2}dx\le t\Vert f^{\prime }\Vert ^{2}_2 + \ln \left( \frac{ \sqrt{c_1}e^{ c_2}}{\sqrt{t}}\right) \Vert f\Vert ^{2}_2. \end{aligned}$$

Taking \(c_1= \frac{ \delta }{e s}\) and \(c_2= |\ln \delta |+ \frac{ s \delta }{e}+1\),

$$\begin{aligned} c(s\delta ):=\sqrt{c_1}e^{ c_2} = \sqrt{\frac{e}{s\delta } } e^{\frac{s\delta }{e}}. \end{aligned}$$

We minimize \(c(s\delta )\) over \(s\delta >0\) and get \(\inf _{s\delta >0} c(s\delta )=\inf _{u>0} \sqrt{\frac{1}{u}}e^u=\sqrt{2e}\), which implies (6.40) as claimed.

1.2 Proof of Lemma 5.3

Let \(0<\alpha <1,\delta >0\) and \(f\in C_0^{\infty }(\mathbb {R})\). We write

$$\begin{aligned} I_{\alpha }(f)=\int _0^{\infty }\frac{1}{\vert x\vert ^{\alpha }} f^2(x)dx=J_{\alpha }+K_{\alpha } \end{aligned}$$

with \(J_{\alpha }=\int _0^{\delta }\frac{1}{\vert x\vert ^{\alpha }} f^2(x)dx\) and \(K_{\alpha }=\int _{\delta }^{\infty }\frac{1}{\vert x\vert ^{\alpha }} f^2(x)dx\). Obviously, \(K_{\alpha } \le {\delta }^{-\alpha }\vert \vert f\vert \vert _2^2\). By integration by parts,

$$\begin{aligned} J_{\alpha }= & {} \left[ \frac{x^{1-\alpha }}{1-\alpha }f^2(x)\right] _0^{\delta } - \frac{2}{1-\alpha }\int _0^{\delta }{ x^{1-\alpha }} f f^{\prime }dx\\\le & {} \frac{\delta ^{1-\alpha }}{1-\alpha }f^2(\delta )+\frac{1}{1-\alpha } {\delta ^{1-\alpha }} \left( \frac{1}{\delta }\vert \vert f\vert \vert ^2_2+{\delta }\vert \vert f^{\prime }\vert \vert ^2_2\right) . \end{aligned}$$

This last inequality comes from:

$$\begin{aligned} 2\vert f f^{\prime }\vert \le \frac{1}{\delta } f^2+{\delta }\left( f^{\prime }\right) ^2. \end{aligned}$$

We now prove

$$\begin{aligned} \vert f(\delta )\vert \le \frac{1}{\sqrt{\delta }}\vert \vert f\vert \vert _2 + \sqrt{\delta } \vert \vert f^{\prime }\vert \vert _2. \end{aligned}$$
(6.45)

Let \(x_0\in [0,\delta ]\) such that \(\vert f(x_0)\vert =\inf _{ [0,\delta ]}\vert f(x)\vert \). Then

$$\begin{aligned} \vert f(\delta )\vert \le \vert f(\delta )-f(x_0)\vert +\vert f(x_0)\vert \le \int _0^{\delta }\vert f^{\prime }\vert + \frac{1}{\sqrt{\delta }} \vert \vert f\vert \vert _2 \le {\sqrt{\delta }} \vert \vert f^{\prime } \vert \vert _2 + \frac{1}{\sqrt{\delta }} \vert \vert f\vert \vert _2 \end{aligned}$$

by Hölder inequality. We deduce

$$\begin{aligned} \left| f(\delta )\right| ^2 \le 2{\delta } \vert \vert f^{\prime } \vert \vert _2^2 + \frac{2}{\delta }\vert \vert f\vert \vert _2^2. \end{aligned}$$

Therefore,

$$\begin{aligned} J_{\alpha }\le \frac{3}{1-\alpha }\left( {\delta }^{2-\alpha }\vert \vert f^{\prime } \vert \vert _2^2 + {\delta }^{-\alpha }\vert \vert f \vert \vert _2^2 \right) . \end{aligned}$$

From this bound and the bound on \(K_{\alpha }\), we get

$$\begin{aligned} I_{\alpha }(f)\le \frac{3}{1-\alpha } {\delta }^{2-\alpha }\vert \vert f^{\prime } \vert \vert _2^2 +\frac{4-\alpha }{1-\alpha } {\delta }^{-\alpha }\vert \vert f \vert \vert _2^2. \end{aligned}$$
(6.46)

This inequality is stable by dilation. Indeed, changing f(x) by \(f_{\lambda }(x)=f({\lambda }x)\), we obtain

$$\begin{aligned} I_{\alpha }(f)\le \frac{3}{1-\alpha } \left( {\delta {\lambda }}\right) ^{2-\alpha }\vert \vert f^{\prime } \vert \vert _2^2 +\frac{4-\alpha }{1-\alpha } \left( {\delta {\lambda }}\right) ^{-\alpha }\vert \vert f \vert \vert _2^2. \end{aligned}$$

This reduces to (6.46) by setting \(s={\delta {\lambda }}\).

We set \(c_1(\alpha )=\frac{3}{1-\alpha }\) and \(c_2(\alpha ) =\frac{4-\alpha }{1-\alpha }\). Let \(t>0\) and choose \(\delta \) such that \(t=c_1(\alpha ){\delta }^{2-\alpha }\). We set \(\gamma =\frac{\alpha }{2-\alpha }\). The inequality (6.46) is equivalent to

$$\begin{aligned} I_{\alpha }(f)\le t\vert \vert f^{\prime } \vert \vert _2^2 +c_3 t^{-\gamma } \vert \vert f \vert \vert _2^2. \end{aligned}$$

with \(c_3=c_2c_1^{\gamma }\). The \(L^2\)-norm are the norm on \(L^2(\mathbb {R}^+)\). We easily deduce the result on \(\mathbb {R}\),

$$\begin{aligned} \int _{-\infty }^{\infty }\frac{1}{\vert x\vert ^{\alpha }} f^2(x) dx = \int _0^{\infty }\frac{1}{\vert x\vert ^{\alpha }} f^2(x) dx+\int _0^{\infty }\frac{1}{\vert x\vert ^{\alpha }} f^2(-x) dx \le t\vert \vert f^{\prime } \vert \vert _2^2 +c_3 t^{-\gamma } \vert \vert f \vert \vert _2^2, \end{aligned}$$

where now, the \(L^2\)-norm are the norm on \(L^2(\mathbb {R})\). To finish the proof of Lemma 5.3, for \(g\in C_0^{\infty }(\mathbb {R}^2)\) and any \(y\in \mathbb {R}\), we set \(f(x)=g(x,y)\) in the inequality just above and integrate this inequality over \(\mathbb {R}\) in y. We obtain

$$\begin{aligned} \int _{\mathbb {R}^2} \frac{1}{\vert x\vert ^{\alpha }} g^2(x,y) dxdy \le t \vert \vert \frac{\partial g}{\partial x} \vert \vert _2^2 +c_3 t^{-\gamma } \vert \vert g \vert \vert _2^2. \end{aligned}$$

We conclude the lemma by the fact that

$$\begin{aligned} \left\| \frac{\partial g}{\partial x} \right\| ^2_{L^{2}\left( \mathbb {R}^{2}\right) }\le \left( \mathcal{L}g,g\right) . \end{aligned}$$

We take \(b=\gamma \) to prove our inequality.

Proof of uniqueness of b. We use a dilation argument. Let \(b^{\prime }>0\) such that, for any \(t>0\),

$$\begin{aligned} \int _{\mathbb {R}^2} \frac{1}{\vert x\vert ^{\alpha }} g^2(x,y) dxdy \le t \left( \mathcal{L}g,g\right) +c_3 t^{-b^{\prime }} \vert \vert g \vert \vert _2^2. \end{aligned}$$

Replace now g with \(g \circ H_{\lambda }\) where \(H_{\lambda }(x,y)=(\lambda x, \lambda ^{\beta } y)\), \(\lambda >0\), for a fixed \(\beta >1\); after a change of variables, we get for any \(t>0\) and \(\lambda >0\):

$$\begin{aligned} \int _{\mathbb {R}^2} \frac{1}{\vert x\vert ^{\alpha }} g^2(x,y) dxdy \le t{\lambda }^{2-\alpha } (\mathcal{L}_{\lambda }g,g) +c_3 t^{-b^{\prime }}{\lambda }^{-\alpha } \vert \vert g \vert \vert _2^2 \end{aligned}$$
(6.47)

with

$$\begin{aligned} \mathcal{L}_{\lambda }=\mathcal{L}_{\lambda ,\beta }:= -\left( \frac{\partial }{\partial {x}}\right) ^2 - {\lambda }^{2\beta -2} \exp \left( -\frac{2\lambda ^{\alpha }}{\vert x\vert ^{\alpha }}\right) \left( \frac{\partial }{\partial {y}}\right) ^2. \end{aligned}$$

Let \(s>0,{\lambda }>0\) and choose \(t>0\) in (6.47) such that \(s=t{\lambda }^{2-\alpha }\), then

$$\begin{aligned} \int _{\mathbb {R}^2} \frac{1}{\vert x\vert ^{\alpha }} g^2(x,y) dxdy \le s \left( \mathcal{L}_{\lambda } g,g\right) +c_3 s^{-b^{\prime }}{\lambda }^{-b^{\prime }(\alpha -2)-\alpha } \vert \vert g \vert \vert _2^2. \end{aligned}$$

Assume \(b^{\prime }>b\) and let \(\lambda \) tend to 0 and s also (in that order), we get

$$\begin{aligned} \int _{\mathbb {R}^2} \frac{1}{\vert x\vert ^{\alpha }} g^2(x,y) dxdy=0 \end{aligned}$$

for any function g: contradiction.

Now, let \(s>0,{\lambda }>0\) and choose \(t>0\) in (6.47) such that \(s=t^{-b^{\prime }}{\lambda }^{-\alpha }\). Then

$$\begin{aligned} \int _{\mathbb {R}^2} \frac{1}{\vert x\vert ^{\alpha }} g^2(x,y) dxdy \le s^{- \frac{1}{b^{\prime }}} {\lambda }^{-\frac{\alpha }{b^{\prime }}+2-\alpha } \left( \mathcal{L}_{\lambda }g,g\right) +c_3 s \vert \vert g \vert \vert _2^2. \end{aligned}$$

Assume \(b>b^{\prime }\) and let \(\lambda \) tend to \(+\infty \) and s tend to 0 (in that order), we get the same contradiction. So \(b^{\prime }=b\). The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

d’Ancona, P., Maheux, P. & Pierfelice, V. Log-Sobolev inequalities for semi-direct product operators and applications. Math. Z. 283, 103–131 (2016). https://doi.org/10.1007/s00209-015-1590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1590-9

Keywords

Mathematics Subject Classification

Navigation