Skip to main content
Log in

\(\text {FI}_{\mathcal {W}}\)-modules and constraints on classical Weyl group characters

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we study the characters of sequences of representations of any of the three families of classical Weyl groups \(\mathcal {W}_n\): the symmetric groups, the signed permutation groups (hyperoctahedral groups), or the even-signed permutation groups. Our results extend work of Church et al. (Duke Math J, 2012. arXiv:1204.4533; Geom Topol 18(5):2951–2984, 2014) on the symmetric groups. We use the concept of an \(\text {FI}_{\mathcal {W}}\)-module, an algebraic object that encodes the data of a sequence of \(\mathcal {W}_n\)-representations with maps between them, defined in the author’s recent work (J Algebra 420:269–332, 2014). We show that if a sequence \(\{V_n\}\) of \(\mathcal {W}_n\)-representations has the structure of a finitely generated \(\text {FI}_{\mathcal {W}}\)-module, then there are substantial constraints on the growth of the sequence and the structure of the characters: for \(n\) large, the dimension of \(V_n\) is equal to a polynomial in \(n\), and the characters of \(V_n\) are given by a character polynomial in signed-cycle-counting class functions, independent of \(n\). We determine bounds the degrees of these polynomials. We continue to develop the theory of \(\text {FI}_{\mathcal {W}}\)-modules, and we apply this theory to obtain new results about a number of sequences associated to the classical Weyl groups: the cohomology of complements of classical Coxeter hyperplane arrangements, and the cohomology of the pure string motion groups (the groups of symmetric automorphisms of the free group).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V.I.: The cohomology ring of the colored braid group. Math. Notes 5(2), 138–140 (1969)

    Article  MATH  Google Scholar 

  2. Bardakov, V.G.: The virtual and universal braids. (2004). arXiv preprint. arxiv:math/0407400

  3. Bux, K.-U., Charney, R., Vogtmann, K.: Automorphisms of two-dimensional RAAGS and partially symmetric automorphisms of free groups. Groups Geom. Dyn. 3(4), 541–554 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bartholdi, L., Enriquez, B., Etingof, P., Rains, E.: Groups and Lie algebras corresponding to the Yang–Baxter equations. J. Algebra 305(2), 742–764 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brendle, T.E., Hatcher, A.: Configuration spaces of rings and wickets. Comment. Math. Helv. 88(1), 131–162 (2013)

  6. Brownstein, A., Lee, R.: Cohomology of the group of motions of \(n\) strings in \(3-\)space. In: Mapping Class Groups and Moduli Spaces of Riemann Surfaces: Proceedings of Workshops Held June 24–28, 1991, Göttingen, Germany, and August 6–10, 1991, Seattle, Washington, vol. 160, 51 pp. Amer Mathematical Society (1993)

  7. Brieskorn, E.: Sur les groupes de tresses. Séminaire Bourbaki, vol. 1971/72 Exposés 400–417, pp. 21–44 (1973)

  8. Collinet, G., Djament, A., Griffin, J.T.: Stabilité homologique pour les groupes d’automorphismes des produits libres. Int. Math. Res. Not. (2012)

  9. Church, T., Ellenberg, J.S., Farb, B.: FI-modules: a new approach to stability for \(S_n\)-representations. Duke Math. J. (2012) arXiv preprint. arXiv:1204.4533

  10. Church, T., Ellenberg, J.S., Farb, B., Nagpal, R.: FI-modules over Noetherian rings. Geom. Topol. 18(5), 2951–2984 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Church, T., Farb, B.: Representation theory and homological stability. Adv. Math. 245, 250–314 (2013). arXiv preprint. arXiv:1008.1368 (2010)

  12. Chen, Y., Glover, H.H., Jensen, C.A.: Proper actions of automorphism groups of free products of finite groups. Int. J. Algebra Comput. 15(02), 255–272 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Charney, R., Vogtmann, K.: Finiteness properties of automorphism groups of right-angled Artin groups. Bull. Lond. Math. Soc. 41(1), 94–102 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dahm, D.M.: A Generalization of Braid Theory. Princeton University Ph.D. Thesis (1962)

  15. Douglass, J.M.: On the cohomology of an arrangement of type \(B_l\). J. Algebra 146, 265–282 (1992)

    Article  MathSciNet  Google Scholar 

  16. Douglass, J.M., Pfeiffer, G., Röhrle, G.: An inductive approach to Coxeter arrangements and solomon’s descent algebra. J. Algebra. Comb. 35(2), 215–235 (2012)

    Article  MATH  Google Scholar 

  17. Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, Berlin (2004)

    Book  Google Scholar 

  18. Garsia, A.M., Goupil, A.: Character polynomials, their \(q\)-analogs and the Kronecker product. Work 1, 1 (2009)

    Google Scholar 

  19. Goldsmith, D.L.: The theory of motion groups. Mich. Math. J. 28(1), 3–17 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Lwahori–Hecke algebras. Oxford University Press, USA (2000)

    Google Scholar 

  21. Griffin, J.T.: Diagonal complexes and the integral homology of the automorphism group of a free product. Proc. Lond. Math. Soc. 106(5), 1087–1120 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Griffin, J.T.: Automorphisms of free products of groups. Doctoral dissertation, University of Cambridge (2013)

  23. Hatcher, A.: Homological stability for automorphism groups of free groups. Comment. Math. Helv. 70(1), 39–62 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hemmer, D.J.: Stable decompositions for some symmetric group characters arising in braid group cohomology. J. Comb. Theory Ser. A 118(3), 1136–1139 (2011)

  25. Hatcher, A., Wahl, N.: Stabilization for mapping class groups of 3\(-\)manifolds. Duke Math. J. 155(2), 205–269 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jensen, C.A., McCammond, J., Meier, J.: The integral cohomology of the group of loops. Geom. Topol. 10, 759–784 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jensen, C.A., Wahl, N.: Automorphisms of free groups with boundaries. Algebr. Geom. Topol 4, 543–569 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kauffman, L.H.: Virtual knot theory. Eur. J. Comb. 20(7), 663–690 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kauffman, L.H.: A survey of virtual knot theory. Knots Hell. 98, 143–202 (2000)

    Article  MathSciNet  Google Scholar 

  30. Kauffman, L.H., Lambropoulou, S.: Virtual braids. (2004). arXiv preprint math.GT/0407349

  31. Kupers, A.: Homological stability for unlinked Euclidean circles in \(\mathbb{R}^{3}\). (2013). arXiv preprint. arXiv:1310.8580

  32. Lee, P.: On the action of the symmetric group on the cohomology of groups related to (virtual) braids. (2013). arXiv preprint. arXiv:1304.4645

  33. Lehrer, G.I., Solomon, L.: On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes. J. Algebra 104(2), 410–424 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  34. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  35. McCool, J.: On basis-conjugating automorphisms of free groups. Can. J. Math. 38(6), 1525–1529 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mac Lane, S.: Categories for the working mathematician, vol. 5. Springer, Berlin (1998)

    MATH  Google Scholar 

  37. MacCullough, D., Miller, A.: Symmetric Automorphisms of Free Products, vol. 582. American Mathematical Society, Providence (1996)

    Google Scholar 

  38. May, J.P., Merling, M.: Comparison of equivariant infinite loop space machines (2012, in preparation)

  39. Murnaghan, F.D.: The characters of the symmetric group. Am. J. Math. 59(4), 739–753 (1937)

    Article  MathSciNet  Google Scholar 

  40. Murnaghan, F.D.: The analysis of the Kronecker product of irreducible representations of the symmetric group. Am. J. Math. 60(3), 761–784 (1938)

    Article  MATH  MathSciNet  Google Scholar 

  41. Murnaghan, F.D.: The characters of the symmetric group. Proc. Nat. Acad. Sci. U.S.A. 37, 55–58 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  42. McEwen, R., Zaremsky, M.C.B.: A combinatorial proof of the degree theorem in Auter space. N. Y. J. Math. 20, 217–228 (2014)

  43. Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56(2), 167–189 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  44. Pirashvili, T.: Dold-Kan type theorem for \({\Gamma }\)-groups. Math. Ann. 318(2), 277–298 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Pirashvili, T.: Hodge decomposition for higher order Hochschild homology. In: Annales scientifiques de l’École Normale Supérieure, vol. 33, no. 2. Société mathématique de France (2000)

  46. Specht, W.: Die charaktere der symmetrischen gruppe. Math. Z. 73(4), 312–329 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  47. Vershinin, V.V.: On homology of virtual braids and Burau representation. J. Knot Theory Ramif. 10(05), 795–812 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  48. Wilson, J.C.H.: Representation stability for the cohomology of the pure string motion groups. Algebr. Geom. Topol 12(2), 909–931 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wilson, J.C.H.: FI\(_{{\cal W}}\)-modules and stability criteria for representations of the classical Weyl groups. J. Algebra 420, 269–332 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  50. Zaremsky, M.C.B.: Rational homological stability for groups of partially symmetric automorphisms of free groups. Algebr. Geom. Topol. 14(3), 1845–1879 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am grateful to Benson Farb, Tom Church, Jordan Ellenberg, Rita Jimenez Rolland, and Peter May for numerous helpful discussions about this project. Thanks are especially due to Benson Farb, my PhD advisor, for extensive guidance and feedback throughout the project. This work was supported in part by a PGS D Scholarship from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer C. H. Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, J.C.H. \(\text {FI}_{\mathcal {W}}\)-modules and constraints on classical Weyl group characters. Math. Z. 281, 1–42 (2015). https://doi.org/10.1007/s00209-015-1473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1473-0

Keywords

Navigation