Skip to main content
Log in

Pfaffian sum formula for the symplectic Grassmannians

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the torus equivariant Schubert classes of the Grassmannian of non-maximal isotropic subspaces in a symplectic vector space. We prove a formula that expresses each of those classes as a sum of multi Schur-Pfaffians, whose entries are equivariantly modified special Schubert classes. Our result gives a proof to Wilson’s conjectural formula, which generalizes the Giambelli formula for the ordinary cohomology proved by Buch–Kresch–Tamvakis, given in terms of Young’s raising operators. Furthermore we show that the formula extends to a certain family of Schubert classes of the symplectic partial isotropic flag varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is well-known that \(\varGamma \) can be defined as the quotient of the polynomial ring \({\mathbb Z}[Q_1,Q_2,Q_3,\ldots ]\) of the variables \(Q_1,Q_2,\ldots \) by the ideal generated by the following elements

    with \(Q_0=1.\) This fact follows from [17], (8.6)  (ii), \((8.2')\) and Proof of (8.4) in Chap. III].

References

  1. Anderson, D.: Introduction to equivariant cohomology in algebraic geometry. In: Contributions to Algebraic Geometry, EMS Series of Congress Reports, pp. 71–92. European Mathematical Society, Zürich (2012)

  2. Anderson, D., Fulton, W.: Degeneracy loci, pfaffians and vexillary permutations in types B, C, and D (preprint). Available on: arXiv:1210.2066

  3. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups, Graduate Texts in Mathematics 231. Springer, Berlin (2005)

    Google Scholar 

  4. Buch, A.S., Kresch, A., Tamvakis, H.: A Giambelli Formula for Isotropic Grassmanians (preprint). Available on: arXiv: 0811.2781

  5. Buch, A.S., Kresch, A., Tamvakis, H.: A Giambelli formula for even orthogonal Grassmannians. J. Reine Angew. Math. Available on: arXiv:1109.6669

  6. Buch, A.S., Kresch, A., Tamvakis, H.: Quantum Giambelli formulas for isotropic Grassmannians. Math. Ann. 354, 801–812 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fulton, W., Pragacz, P.: Schubert Varieties and Degeneracy Loci, Lecture Notes in Mathematics 1689. Springer, Berlin (1998)

    Google Scholar 

  8. Giambelli, G.Z.: Risoluzione del problema degli spazi secanti. Mem. R. Accad. Sci. Torino (2) 52, 171–211 (1902)

    Google Scholar 

  9. Humphreys, J.E.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, vol. 29 (1990)

  10. Ikeda, T.: Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian. Adv. Math. 215, 1–23 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ikeda, T., Mihalcea, L., Naruse, H.: Double Schubert polynomials for the classical groups. Adv. Math. 226, 840–886 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ikeda, T., Naruse, H.: Excited Young diagrams and equivariant Schubert calculus. Trans. Am. Math. Soc. 361, 5193–5221 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ivanov, V.N.: Interpolation analogue of Schur \(Q\)-functions. Zap. Nauc. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. 307, 99–119 (2004)

    Google Scholar 

  14. Kempf, G., Laksov, D.: The determinantal formula of Schubert calculus. Acta Math. 132, 153–162 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kazarian, M.: On Lagrange and symmetric degeneracy loci. Issac Newton Institute for Mathematical Sciences Preprint Series (2000). Available at: http://www.newton.cam.ac.uk/preprints2000.html

  16. Kresch, A., Tamvakis, H.: Double Schubert polynomials and degeneracy loci for the classical groups. Annales de l’institut Fourier 52(6), 1681–1727 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  18. Manivel, L.: Symmetric Functions, Schubert Polynomials and Degeneracy Loci. SMF/AMS texts and monographs, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris. Translated from the 1998 French original by John R. Swallow, Cours Spécialisés, 3. vol. 6 (2001)

  19. Naruse, H.: private communication

  20. Pragacz, P.: Algebro-geometric applications of Schur \(S\)- and \(Q\)-polynomials. In: Séminaire d’Algèbre Dubreil-Malliavin 1989–1990, Lecture Notes in Mathematics vol. 1478, pp. 130–191. Springer, Berlin (1991)

  21. Pragacz, P., Ratajski, J.: Formulas for Lagrangian and orthogonal degeneracy loci; \(\tilde{Q}\)-polynomial approach. Compos. Math. 107(1), 11–87 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schur, I.: Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. J. Reine Angew. Math. 139, 155–250 (1911)

    MATH  Google Scholar 

  23. Tamvakis, H.: Giambelli and degeneracy locus formulas for classical \(G/P\) spaces (preprint). Available on: arXiv:1305.3543

  24. Tamvakis, H.: A Giambelli formula for classical \(G/P\) spaces. J. Algebraic Geom. 23(2), 245–278 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tamvakis, H., Wilson, E.: Double theta polynomials and equivariant Giambelli formulas (preprint). Available on arXiv:1410.8329

  26. Wilson, E.: Equivariant Giambelli Formulae for Grassmannians. Ph.D. thesis, University of Maryland, College Park (2010)

Download references

Acknowledgments

We are especially grateful to Hiroshi Naruse for explaining his results, and also to Harry Tamvakis for valuable comments to an earlier version of this manuscript. We thank Dave Anderson, Anders Skovsted Buch, Andrew Kresch, Changzheng Li, Leonardo Mihalcea, Masaki Nakagawa for the helpful conversations and their comments. We thank the anonymous referee and Harry Tamvakis for independently pointing out an error of an argument in proving Theorem 4 in a previous version. We also thank Thomas Hudson for carefully reading the manuscript. This paper was written for the most part during the first named author’s stay at KAIST in 2013. The hospitality and perfect working conditions there are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Ikeda.

Additional information

Dedicated to Hiroshi Naruse on the occasion of his sixtieth birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, T., Matsumura, T. Pfaffian sum formula for the symplectic Grassmannians. Math. Z. 280, 269–306 (2015). https://doi.org/10.1007/s00209-015-1423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1423-x

Keywords

Mathematics Subject Classification

Navigation