Skip to main content
Log in

The Cauchy problem for \(\fancyscript{D}\)-modules on Ran spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We will adopt an elementary approach to \(\fancyscript{D}\)-modules on Ran spaces in terms of two-limits; the aim here is to define the category of coherent \(\fancyscript{D}\)-modules, characteristic varieties and non-characteristic maps. An application will be the proof of the Cauchy–Kowaleski–Kashiwara theorem in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beilinson, A., Drinfeld, V.: Chiral Algebras, vol. 51. A. M. S. Colloquium Publications. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  2. Francis, J., Gaitsgory, D.: Chiral Koszul Duality (2011). arXiv:1103.5803

  3. Guillermou, S., Schapira, P.: Operations on Projective Limits of Categories of Sheaves (2006, unpublished)

  4. Kashiwara, M.: Algebraic Study of Systems of Partial Differential Equations. Thesis, Tokyo University (1970). Translated by A. D’Agnolo and J-P. Schneiders, Mémoires Soc. Math. France 63 (1995)

  5. Kashiwara, M.: On the maximally overdetermined system of linear differential equations I. Publ. Res. Inst. Math. Sci. 10, 563–579 (1974/1975)

  6. Kashiwara, M.: D-Modules and Microlocal Calculus, Translations of Mathematical Monographs, vol. 217. American Mathematical Society, Providence (2003)

    Google Scholar 

  7. Kashiwara, M., Schapira, P.: Sheaves on Manifolds, vol. 292. Grundlehren der Mathematischen Wissenschaften, Springer, Berlin (1990), x+512 pp

  8. Kashiwara, M., Schapira, P.: Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332. Springer, Berlin (2006)

    Google Scholar 

  9. Kashiwara, M., Schapira, P.: Deformation Quantization Modules (2010). arXiv:1003.3304

  10. S-G-A 4: Théorie des topos et cohomologie étale des schémas, Sém. Géom. Algébrique (1963–1964) by M. Artin, A. Grothendieck and J.-L. Verdier, Lecture Notes in Mathematics vols. 260, 270, 305, Springer (1972/1973)

Download references

Acknowledgments

I am deeply grateful to Pierre Schapira for having called my attention on the study of coherent \(\fancyscript{D}\)-modules over Ran spaces. I have much benefited from the reading of the unpublished manuscript [3] and I wish to kindly thank the authors. Moreover I thank the Luxembourgian National Research Fund for support via AFR Grant Ph.D. 09-072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Bonavolontà.

Appendix

Appendix

There are two other natural categories, \(\mathrm{{\mathfrak {S}} }^+(\mathcal{{I}})\) and \(\mathrm{{\mathfrak {S}} }^-(\mathcal{{I}})\).

Definition 6.13

  1. (a)

    An object \(F\) of \(\mathrm{{\mathfrak {S}} }^+(\mathcal{{I}})\) (resp. \(\mathrm{{\mathfrak {S}} }^-(\mathcal{{I}})\)) is a family \(\{(F_i, \phi _s)\}_{i,s}\) (\(i\in \mathcal{{I}}\), \(s\in \mathrm{Mor }(\mathcal{{I}})\)) where

    1. (i)

      for any \(i\in \mathcal{{I}}\), \(F_i\) is an object of \(\mathrm{{\mathfrak {S}} }(i)\),

    2. (i)

      for any morphism \(s:i_1\xrightarrow []{}i_2\) in \(\mathcal{{I}}\), \(\phi _s :F_{i_1} \xrightarrow []{}\rho _s (F_{i_2})\) (resp. \(\phi _s :\rho _s (F_{i_2}) \xrightarrow []{}F_{i_1}\)) is a morphism such that

      • for all \(i \in \mathcal{{I}}\), \(\phi _{{{\mathrm{id}}}_i} = {{\mathrm{id}}}_{F_i}\),

      • for any sequence \(i_1\xrightarrow []{s}i_2\xrightarrow []{t}i_3\) of morphisms in \(\mathcal{{I}}\), the following diagram commutes

        (6.3)

        (resp. the following diagram commutes

        (6.4)
  2. (b)

    A morphism \(f:\{(F_i,\phi _s)\}_{i,s}\xrightarrow []{}\{(F'_i,\phi '_s)\}_{i,s}\) in \(\mathrm{{\mathfrak {S}} }^+(\mathcal{{I}})\) (resp. \(\mathrm{{\mathfrak {S}} }^-(\mathcal{{I}})\)) is a family of morphisms \(f_i:F_i\xrightarrow []{}F'_i\) such that for any \(s:i_1\xrightarrow []{}i_2\), the diagram below commutes:

    (6.5)

    (resp. the diagram below commutes:

    (6.6)

We consider \(\mathrm{{\mathfrak {S}} }(\mathcal{{I}})\) as the full subcategory of \(\mathrm{{\mathfrak {S}} }^+(\mathcal{{I}})\) or \(\mathrm{{\mathfrak {S}} }^-(\mathcal{{I}})\) consisting of objects \(\{(F_i, \phi _s)\}_{i\in \mathcal{{I}},s\in \mathrm{Mor }(\mathcal{{I}})}\) such that for all \(s\in \mathrm{Mor }(\mathcal{{I}})\), the morphisms \(\phi _s\) are isomorphisms and we denote by \(\iota ^+_\mathcal{{I}}:\mathrm{{\mathfrak {S}} }(\mathcal{{I}}) \xrightarrow []{}\mathrm{{\mathfrak {S}} }^+(\mathcal{{I}})\) and \(\iota ^-_\mathcal{{I}}:\mathrm{{\mathfrak {S}} }(\mathcal{{I}}) \xrightarrow []{}\mathrm{{\mathfrak {S}} }^-(\mathcal{{I}})\) the natural faithful functors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonavolontà, G. The Cauchy problem for \(\fancyscript{D}\)-modules on Ran spaces. Math. Z. 280, 149–163 (2015). https://doi.org/10.1007/s00209-015-1416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1416-9

Keywords

Navigation