Skip to main content
Log in

A weak version of the Lipman–Zariski conjecture

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The complex-analytic version of the Lipman–Zariski conjecture says that a complex space is smooth if its tangent sheaf is locally free. We prove the following weak version of the conjecture: A normal complex space is smooth if its tangent sheaf is locally free and locally admits a basis consisting of pairwise commuting vector fields. The main tool used in the proof of our result is a new extension theorem for reflexive differential forms on a normal complex space. It says that a closed holomorphic differential form of degree one defined on the smooth locus of a normal complex space can be extended to a holomorphic differential form on any resolution of singularities of the complex space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010). doi:10.1090/S0894-0347-09-00649-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Druel, S.: The Zariski-Lipman conjecture for log canonical spaces. arXiv:1301.5910 (math.AG) (2013)

  3. Flenner, H.: Extendability of differential forms on nonisolated singularities. Invent. Math. 94(2), 317–326 (1988). doi:10.1007/BF01394328

    Article  MathSciNet  MATH  Google Scholar 

  4. Graf, P.: An optimal extension theorem for 1-forms and the Lipman-Zariski conjecture. arXiv:1301.7315 (math.AG) (2013)

  5. Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Inst. Hautes Études Sci. Publ. Math. (5), 64 (1960)

  6. Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Greb, D., Kebekus, S., Kovács, S.J., Peternell, T.: Differential forms on log canonical spaces. Publ. Math. Inst. Hautes Études Sci. 114, 87–169 (2011). doi:10.1007/s10240-011-0036-0

    Article  MATH  Google Scholar 

  8. Greb, D., Kebekus, S., Peternell, T.: Reflexive differential forms on singular spaces - Geometry and Cohomology. Journal für die Reine und Angewandte Mathematik (Crelle’s Journal), published electronically (2013). doi:10.1515/crelle-2012-0097

  9. Greuel, G.M.: Dualität in der lokalen Kohomologie isolierter Singularitäten. Math. Ann. 250(2), 157–173 (1980). doi:10.1007/BF01364456

    Article  MathSciNet  MATH  Google Scholar 

  10. Hochster, M.: The Zariski-Lipman conjecture in the graded case. J. Algebra 47(2), 411–424 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Källström, R.: The Zariski-Lipman conjecture for complete intersections. J. Algebra 337, 169–180 (2011). doi:10.1016/j.jalgebra.2011.05.003

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaup, L., Kaup, B.: Holomorphic functions of several variables, de Gruyter Studies in Mathematics, vol. 3. Walter de Gruyter & Co., Berlin (1983). doi:10.1515/9783110838350. An introduction to the fundamental theory, With the assistance of Gottfried Barthel, Translated from the German by Michael Bridgland

  13. Kollár, J.: Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166. Princeton University Press, Princeton, NJ (2007)

    Google Scholar 

  14. Lipman, J.: Free derivation modules on algebraic varieties. Am. J. Math. 87, 874–898 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Manaresi, M.: Sard and Bertini type theorems for complex spaces. Ann. Mat. Pura Appl. 4 131, 265–279 (1982). doi:10.1007/BF01765156

    Article  MathSciNet  MATH  Google Scholar 

  16. Oeljeklaus, K., Richthofer, W.: Linearization of holomorphic vector fields and a characterization of cone singularities. Abh. Math. Sem. Univ. Hamburg 58, 63–87 (1988). doi:10.1007/BF02941369

    Article  MathSciNet  MATH  Google Scholar 

  17. Reiffen, H.J.: Das Lemma von Poincaré für holomorphe Differential-formen auf komplexen Räumen. Math. Z. 101, 269–284 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Steenbrink, J., van Straten, D.: Extendability of holomorphic differential forms near isolated hypersurface singularities. Abh. Math. Sem. Univ. Hamburg 55, 97–110 (1985). doi:10.1007/BF02941491

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author was motivated to think about the Lipman–Zariski conjecture following interesting discussions with Patrick Graf, Daniel Greb and Sebastian Goette. The author would like to thank especially Stefan Kebekus, Daniel Greb, Patrick Graf and the anonymous referee for carefully reading preliminary versions of this work. Karl Oeljeklaus kindly pointed to his and Richthofers results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Jörder.

Additional information

The author gratefully acknowledges support by the DFG-Forschergruppe 790 “Classification of Algebraic Surfaces and Compact Complex Manifolds” and the Graduiertenkolleg 1821 “Cohomological Methods in Geometry”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jörder, C. A weak version of the Lipman–Zariski conjecture. Math. Z. 278, 893–899 (2014). https://doi.org/10.1007/s00209-014-1337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1337-z

Keywords

Navigation