Skip to main content
Log in

Exhaustion functions and normal forms for proper maps of balls

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study a relationship between rational proper maps of balls in different dimensions and strongly plurisubharmonic exhaustion functions of the unit ball induced by such maps. Putting the unique critical point of this exhaustion function at the origin leads to a normal form for rational proper maps of balls. The normal form of the map, which is up to composition with unitaries, takes the origin to the origin, and it normalizes the denominator by eliminating the linear terms and diagonalizing the quadratic part. The singular values of the quadratic part of the denominator are spherical invariants of the map. When these singular values are positive and distinct, the normal form is determined up to a finite subgroup of the unitary group. We also study which denominators arise for cubic maps, and when we do not require taking the origin to the origin, which maps are equivalent to polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. D’Angelo uses \(1-\lambda z_1 z_2\), which we put into our normal form.

References

  1. Alexander, H.: Proper holomorphic mappings in \(C^{n}\). Indiana Univ. Math. J. 26(1), 137–146 (1977). https://doi.org/10.1512/iumj.1977.26.26010. (0022-2518)

    Article  MathSciNet  Google Scholar 

  2. Catlin, D.W., D’Angelo, J.P.: A stabilization theorem for Hermitian forms and applications to holomorphic mappings. Math. Res. Lett. 3(2), 149–166 (1996). https://doi.org/10.4310/MRL.1996.v3.n2.a2. (1073-2780)

    Article  MathSciNet  Google Scholar 

  3. Chiappari, S.A.: Holomorphic extension of proper meromorphic mappings. Michigan Math. J. 38(2), 167–174 (1991). https://doi.org/10.1307/mmj/1029004326. (0026-2285)

    Article  MathSciNet  Google Scholar 

  4. Cima, J.A., Suffridge, T.J.: Boundary behavior of rational proper maps. Duke Math. J. 60(1), 135–138 (1990). https://doi.org/10.1215/S0012-7094-90-06004-1. (0012-7094)

    Article  MathSciNet  Google Scholar 

  5. Courant, R.: Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces, Appendix by M. Schiffer, p. xiii+330. Interscience Publishers Inc, New York (1950)

    Google Scholar 

  6. D’Angelo, J.P.: Rational CR maps

  7. D’Angelo, J.P.: Several complex variables and the geometry of real hypersurfaces, p. xiv+272. Studies in Advanced Mathematics. CRC Press, Boca Raton (1993). (0-8493-8272-6)

    Google Scholar 

  8. D’Angelo, J.P.: Hermitian Analysis, Cornerstones, From Fourier Series to Cauchy–Riemann Geometry; Second edition of [MR3134931]. Birkhäuser/Springer, Cham (2019) (978-3-030-16513-0, 978-3-030-16514-7). https://doi.org/10.1007/978-3-030-16514-7

  9. D’Angelo, J.P.: Rational Sphere Maps, Progress in Mathematics, 341, Birkhäuser/Springer, Cham, (2021) (\(\copyright \) 2021, xiii+233). https://doi.org/10.1007/978-3-030-75809-7

  10. D’Angelo, J.P., Lebl, J.: Homotopy equivalence for proper holomorphic mappings. Adv. Math. 286, 160–180 (2016). https://doi.org/10.1016/j.aim.2015.09.007. (0001–8708)

    Article  MathSciNet  Google Scholar 

  11. D’Angelo, J.P., Xiao, M.: Symmetries in CR complexity theory. Adv. Math. 313, 590–627 (2017). https://doi.org/10.1016/j.aim.2017.04.014. (0001–8708)

    Article  MathSciNet  Google Scholar 

  12. D’Angelo, J.P., Huo, Z., Xiao, M.: Proper holomorphic maps from the unit disk to some unit ball. Proc. Am. Math. Soc. 145(6), 2649–2660 (2017). https://doi.org/10.1090/proc/13425. (0002-9939)

  13. Dor, A.: Proper holomorphic maps between balls in one co-dimension. Ark. Mat. 28(1), 49–100 (1990). https://doi.org/10.1007/BF02387366. (0004-2080)

    Article  MathSciNet  Google Scholar 

  14. Ebenfelt, P.: Partial rigidity of degenerate CR embeddings into spheres. Adv. Math. 239, 72–96 (2013). https://doi.org/10.1016/j.aim.2013.02.011. (0001–8708)

    Article  MathSciNet  Google Scholar 

  15. Faran, J.J.: Maps from the two-ball to the three-ball. Invent. Math. 68(3), 441–475 (1982). https://doi.org/10.1007/BF01389412. (0020-9910)

    Article  MathSciNet  Google Scholar 

  16. Faran, J.J.: The linearity of proper holomorphic maps between balls in the low codimension case. J. Differ. Geom. 24(1), 15–17 (1986). (0022-040X)

    Article  MathSciNet  Google Scholar 

  17. Faran, J., Huang, X., Ji, S., Zhang, Y.: Polynomial and rational maps between balls. Pure Appl. Math. Q. 6, 3 ((2010)). (Special Issue: In honor of Joseph J. Kohn., 829–842, 1558-8599). https://doi.org/10.4310/PAMQ.2010.v6.n3.a10

  18. Forstnerič, F.: Extending proper holomorphic mappings of positive codimension. Invent. Math. 95(1), 31–61 (1989). https://doi.org/10.1007/BF01394144. (0020-9910)

    Article  MathSciNet  Google Scholar 

  19. Hamada, H.: Rational proper holomorphic maps from \({ B}^n\) into \({ B}^{2n}\). Math. Ann. 331(3), 693–711 (2005). https://doi.org/10.1007/s00208-004-0606-2. (0025-5831)

    Article  MathSciNet  Google Scholar 

  20. Horn, R., Johnson, A., Charles, R.: Matrix Analysis, vol. 2, p. xviii+643. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  21. Huang, X.: On a linearity problem for proper holomorphic maps between balls in complex spaces of different dimensions. J. Differ. Geom. 51(1), 13–33 (1999). (0022-040X)

    Article  MathSciNet  Google Scholar 

  22. Huang, X., Ji, S., Xu, D.: A new gap phenomenon for proper holomorphic mappings from \(B^n\) into \(B^N\). Math. Res. Lett. 13(4), 515–529 (2006). https://doi.org/10.4310/MRL.2006.v13.n4.a2.(1073-2780)

  23. Huang, X., Ji, S., Yin, W.: On the third gap for proper holomorphic maps between balls. Math. Ann. 358, 1–2 (2014). https://doi.org/10.1007/s00208-013-0952-z. (115-142)

  24. Lebl, J.: Normal forms, Hermitian operators, and CR maps of spheres and hyperquadrics. Michigan Math. J. 60(3), 603–628 (2011). https://doi.org/10.1307/mmj/1320763051. (0026-2285)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Lebl.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was in part supported by Simons Foundation collaboration Grant 710294.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebl, J. Exhaustion functions and normal forms for proper maps of balls. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02837-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02837-5

Mathematics Subject Classification

Navigation