Skip to main content
Log in

Well-posedness of stochastic partial differential equations with fully local monotone coefficients

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Consider stochastic partial differential equations (SPDEs) with fully local monotone coefficients in a Gelfand triple \(V\subseteq H \subseteq V^*\):

$$\begin{aligned} {\left\{ \begin{array}{ll} dX(t) = A(t,X(t))dt + B(t,X(t))dW(t), \quad t\in (0,T],\\ ~ X(0) = x\in H, \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} A: [0,T]\times V \rightarrow V^* , \quad B: [0,T]\times V \rightarrow L_2(U,H) \end{aligned}$$

are measurable maps, \(L_2(U,H)\) is the space of Hilbert–Schmidt operators from U to H and W is a U-cylindrical Wiener process. Such SPDEs include many interesting models in applied fields like fluid dynamics etc. In this paper, we establish the well-posedness of the above SPDEs under fully local monotonicity condition solving a longstanding open problem. The conditions on the diffusion coefficient \(B(t,\cdot )\) are allowed to depend on both the H-norm and V-norm. In the case of classical SPDEs, this means that \(B(\cdot ,\cdot )\) could also depend on the gradient of the solution. The well-posedness is obtained through a combination of pseudo-monotonicity techniques and compactness arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Aldous, D.: Stopping times and tightness. Ann. Prob. 6(2), 335–340 (1978)

    Article  MathSciNet  Google Scholar 

  2. Antonopoulou, D.C., Karali, G., Millet, A.: Existence and regularity of solution for a stochastic Cahn–Hilliard/Allen–Cahn equation with unbounded noise diffusion. J. Differ. Equ. 260(3), 2383–2417 (2016)

    Article  MathSciNet  Google Scholar 

  3. Barbu, V., Da Prato, G., Röckner, M.: Stochastic Porous Media Equations. Lecture Notes in Mathematics., vol. 2163. Springer, Berlin (2016)

    Google Scholar 

  4. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999)

    Book  Google Scholar 

  5. Brézis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18(1), 115–175 (1968)

    Article  MathSciNet  Google Scholar 

  6. Brzeźniak, Z., Liu, W., Zhu, J.: Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise. Nonlinear Anal. Real World Appl. 17, 283–310 (2014)

    Article  MathSciNet  Google Scholar 

  7. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.A.: Stochastic reaction–diffusion equations driven by jump processes. Potential Anal. 49(1), 131–201 (2018)

    Article  MathSciNet  Google Scholar 

  8. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.A.: Some results on the penalised nematic liquid crystals driven by multiplicative noise: weak solution and maximum principle. Stoch. Partial Differ. Equ. Anal. Comput. 7(3), 417–475 (2019)

    MathSciNet  Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy for a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  10. Cairoli, R., Dalang, R.C.: Sequential Stochastic Optimization. Wiley, New York (1996)

    Book  Google Scholar 

  11. Cardon-Weber, C.: Cahn–Hilliard stochastic equation: existence of the solution and of its density. Bernoulli 7(5), 777–816 (2001)

    Article  MathSciNet  Google Scholar 

  12. Es-Sarhir, A., von Renesse, M.-K.: Ergodicity of stochastic curve shortening flow in the plane. SIAM J. Math. Anal. 44(1), 224–244 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gnann, M.V., Hoogendijk, J., Veraar, M.C.: Higher order moments for SPDE with monotone nonlinearities (2022). ArXiv:2203.15307v1

  14. Goldys, B., Röckner, M., Zhang, X.: Martingale solutions and Markov selections for stochastic partial differential equations. Stoch. Process. Appl. 119(5), 1725–1764 (2009)

    Article  MathSciNet  Google Scholar 

  15. Gyöngy, I.: On stochastic equations with respect to semimartingales III. Stochastics 7(4), 231–254 (1982)

    Article  MathSciNet  Google Scholar 

  16. Hirano, N.: Nonlinear evolution equations with nonmonotonic perturbations. Nonlinear Anal. 13(6), 599–609 (1989)

    Article  MathSciNet  Google Scholar 

  17. Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations II. Stoch. Anal. Appl. 31(4), 663–670 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hofmanová, M., Zhang, T.: Quasilinear parabolic stochastic partial differential equations: existence, uniqueness. Stoch. Process. Appl. 127(10), 3354–3371 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Publishing Co., Kodansha Ltd, Amsterdam, Tokyo (1989)

    Google Scholar 

  20. Jakubowski, A.: On the Skorokhod topology. Ann. Inst. H. Poincaré Probab. Statist. 22(3), 263–285 (1986)

    MathSciNet  Google Scholar 

  21. Kosmala, T., Riedle, M.: Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete Contin. Dyn. Syst. Ser. B 26(6), 2879–2898 (2021)

    MathSciNet  Google Scholar 

  22. Krylov, N.V., Rozovskiĭ, B.L.: Stochastic evolution equations. In: Current problems in mathematics, volume 14 (Russian), pp. 71–147, 256 (1979)

  23. Lin, F., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math. 48(5), 501–537 (1995)

    Article  MathSciNet  Google Scholar 

  24. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

    Google Scholar 

  25. Liu, W.: Existence and uniqueness of solutions to nonlinear evolution equations with locally monotone operators. Nonlinear Anal. 75(18), 7543–7561 (2011)

    Article  MathSciNet  Google Scholar 

  26. Liu, W.: Well-posedness of stochastic partial differential equations with Lyapunov condition. J. Differ. Equ. 255(3), 572–592 (2013)

    Article  MathSciNet  Google Scholar 

  27. Liu, W., Röckner, M.: SPDE in Hilbert space with locally monotone coefficients. J. Funct. Anal. 259(11), 2902–2922 (2010)

    Article  MathSciNet  Google Scholar 

  28. Liu, W., Röckner, M.: Local and global well-posedness of SPDE with generalized coercivity conditions. J. Differ. Equ. 254(2), 725–755 (2013)

    Article  MathSciNet  Google Scholar 

  29. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext, Springer, Berlin (2015)

    Book  Google Scholar 

  30. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3–4), 211–228 (2003)

    Article  MathSciNet  Google Scholar 

  31. Medjo, T.T.: On the existence and uniqueness of solution to a stochastic 2D Allen–Cahn–Navier–Stokes model. Stoch. Dyn. 19(1), 1950007 (2019)

    Article  MathSciNet  Google Scholar 

  32. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MathSciNet  Google Scholar 

  33. Neelima, ŠD.: Coercivity condition for higher moment a priori estimates for nonlinear SPDEs and existence of a solution under local monotonicity. Stochastics 92(5), 684–715 (2020)

    Article  MathSciNet  Google Scholar 

  34. Nguyen, P., Tawri, K., Temam, R.: Nonlinear stochastic parabolic partial differential equations with a monotone operator of the Ladyzenskaya–Smagorinsky type, driven by a Lévy noise. J. Funct. Anal. 281(8), 109157 (2021)

    Article  Google Scholar 

  35. Pardoux, E.: Sur des équations aux dérivées partielles stochastiques monotones. C. R. Acad. Sci. 275, A101–A103 (1972)

    Google Scholar 

  36. Pardoux, E.: Équations aux dérivées partielles stochastiques non linéaires monotones. Ph.D. thesis, Université Paris XI (1975)

  37. Prévôt, C., Röckner, M.: A concise course on stochastic partial differential equations. Lecture Notes in Mathematics, volume 1905, Springer (2007)

  38. Ren, J., Röckner, M., Wang, F.Y.: Stochastic generalized porous media and fast diffusion equations. J. Differ. Equ. 238(1), 118–152 (2007)

    Article  MathSciNet  Google Scholar 

  39. Renardy, M., Rogers R.C.: An Introduction to Partial Differential Equations. Texts in Applied Mathematics, volume 13, Springer (2004)

  40. Röckner, M., Wang, F.-Y.: Non-monotone stochastic generalized porous media equations. J. Differ. Equ. 245(12), 3898–3935 (2008)

    Article  MathSciNet  Google Scholar 

  41. Röckner, M., Zhang, X.: Stochastic tamed 3D Navier–Stokes equations: existence, uniqueness and ergodicity. Probab. Theory Related Fields 145(1–2), 211–267 (2009)

    Article  MathSciNet  Google Scholar 

  42. Shioji, N.: Existence of periodic solutions for nonlinear evolution equations with pseudo monotone operators. Proc. Am. Math. Soc. 125(10), 2921–2929 (1997)

    Article  Google Scholar 

  43. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Math. Pura Appl. 146(1), 65–96 (1987)

    Article  Google Scholar 

  44. Temam, R.: Navier–Stokes equations: theory and numerical analysis. American Mathematical Society (2001)

  45. Vallet, G., Zimmermann, A.: Well-posedness for a pseudomonotone evolution problem with multiplicative noise. J. Evol. Equ. 19(1), 153–202 (2019)

    Article  MathSciNet  Google Scholar 

  46. Vallet, G., Zimmermann, A.: Well-posedness for nonlinear SPDEs with strongly continuous perturbation. Proc. Roy. Soc. Edinburgh Sect. A 151(1), 265–295 (2021)

    Article  MathSciNet  Google Scholar 

  47. Xu, X., Zhao, L., Liu, C.: Axisymmetric solutions to coupled Navier–Stokes/Allen–Cahn equations. SIAM J. Math. Anal. 41(6), 2246–2282 (2010)

    Article  MathSciNet  Google Scholar 

  48. Yue, P., Feng, J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  MathSciNet  Google Scholar 

  49. Zeidler, E.: Nonlinear functional analysis and its applications: II/B: Nonlinear monotone operators. Springer (1990)

  50. Zhang, X.: On stochastic evolution equations with non-Lipschitz coefficients. Stoch. Dyn. 9(4), 549–595 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partly supported by National Key R &D Program of China (No.2022YFA1006001) and by National Natural Science Foundation of China (Nos. 12131019, 12001516, 11721101), the Fundamental Research Funds for the Central Universities (Nos. WK3470000031, WK3470000024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tusheng Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röckner, M., Shang, S. & Zhang, T. Well-posedness of stochastic partial differential equations with fully local monotone coefficients. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02836-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02836-6

Mathematics Subject Classification

Navigation