Skip to main content
Log in

Intersection theoretic inequalities via Lorentzian polynomials

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We explore the applications of Lorentzian polynomials to the fields of algebraic geometry, analytic geometry and convex geometry. In particular, we establish a series of intersection theoretic inequalities, which we call rKT property, with respect to m-positive classes and Schur classes. We also study its convexity variants—the geometric inequalities for m-convex functions on the sphere and convex bodies. Along the exploration, we prove that any finite subset on the closure of the cone generated by m-positive classes can be endowed with a polymatroid structure by a canonical numerical-dimension type function, extending our previous result for nef classes; and we prove Alexandrov–Fenchel inequalities for valuations of Schur type. We also establish various analogs of sumset estimates (Plünnecke–Ruzsa inequalities) from additive combinatorics in our contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Adiprasito, K., June, H., Eric, K.: Hodge theory for combinatorial geometries. Ann. Math. (2) 188(2), 381–452 (2018)

    Article  MathSciNet  Google Scholar 

  2. Alesker, S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11(2), 244–272 (2001)

    Article  MathSciNet  Google Scholar 

  3. Alesker, S., Fu, J.H.G.: Integral geometry and valuations. Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Basel (2014) Lectures from the Advanced Course on Integral Geometry and Valuation Theory held at the Centre de Recerca Matemàtica (CRM), Barcelona, Sep 6–10, edited by Eduardo Gallego and Gil Solanes (2010)

  4. Alexandrov, A.: Zur theorie der gemischten volumina von konvexen Körpern. IV. Die gemischten Diskriminanten und die gemischten volumina. Mat. Sb. 45(2), 227–251 (1938)

    Google Scholar 

  5. Alexandrov, A. D.: Selected works. Part I. Classics of Soviet Mathematics, vol. 4. Gordon and Breach Publishers, Amsterdam. Selected scientific papers, translated from the Russian by P. S. V. Naidu, Edited and with a preface by Yu. G. Reshetnyak and S. S. Kutateladze (1996)

  6. Anari, N., Liu, K., Gharan, S.O., Cynthia, V.: Log-Concave Polynomials III: Mason’s Ultra-Log-Concavity Conjecture For Independent Sets of Matroids. arXiv:1811.01600 (2018)

  7. Anari, N., Liu, K., Gharan, S.O., Vinzant, C.: Log-concave polynomials II: high-dimensional walks and an FPRAS for counting bases of a matroid. In: STOC’19—Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. ACM, New York, pp. 1–12 (2019)

  8. Anari, N., Gharan, S.O., Vinzant, C.: Log-concave polynomials, I: entropy and a deterministic approximation algorithm for counting bases of matroids. Duke Math. J. 170(16), 3459–3504 (2021)

    Article  MathSciNet  Google Scholar 

  9. Artstein-Avidan, S., Florentin, D., Ostrover, Y.: Remarks about mixed discriminants and volumes. Commun. Contemp. Math. 16(2), 1350031 (2014)

    Article  MathSciNet  Google Scholar 

  10. Backman, S., Eur, C., Simpson, C.: Simplicial Generation of Chow Rings of Matroids. arXiv:1905.07114 (2019)

  11. Bernig, A., Fu, J.H.G.: Convolution of convex valuations. Geom. Dedic. 123, 153–169 (2006)

    Article  MathSciNet  Google Scholar 

  12. Błocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier (Grenoble) 55(5), 1735–1756 (2005)

    Article  MathSciNet  Google Scholar 

  13. Bobkov, S., Madiman, M.: Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures. J. Funct. Anal. 262(7), 3309–3339 (2012)

    Article  MathSciNet  Google Scholar 

  14. Boucksom, S., Demailly, J.-P., Păun, M., Peternell, T.: The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom. 22(2), 201–248 (2013)

    Article  MathSciNet  Google Scholar 

  15. Brändén, P., June, H.: Lorentzian polynomials. Ann. Math. (2) 192(3), 821–891 (2020)

    Article  MathSciNet  Google Scholar 

  16. Brändén, P., Leake, J: Lorentzian Polynomials on Cones and the Heron–Rota–Welsh Conjecture. arXiv:2110.00487 (2021)

  17. Brazitikos, S., Giannopoulos, A., Liakopoulos, D.-M.: Uniform cover inequalities for the volume of coordinate sections and projections of convex bodies. Adv. Geom. 18(3), 345–354 (2018)

    Article  MathSciNet  Google Scholar 

  18. Dang, N.-B.: Degrees of iterates of rational maps on normal projective varieties. Proc. Lond. Math. Soc. (3) 121(5), 1268–1310 (2020)

    Article  MathSciNet  Google Scholar 

  19. Dang, N.-B., Xiao, J.: Positivity of valuations on convex bodies and invariant valuations by linear actions. J. Geom. Anal. 31(11), 10718–10777 (2021)

    Article  MathSciNet  Google Scholar 

  20. Demailly, J.-P.: Complex Analytic and Differential Geometry. Online book. https://www.fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf. Institut Fourier, Grenoble (2012)

  21. Demailly, J.-P., Păun, M.: Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. (2) 159(3), 1247–1274 (2004)

    Article  MathSciNet  Google Scholar 

  22. Dinh, T.-C., Nguyên, V.-A.: The mixed Hodge–Riemann bilinear relations for compact Kähler manifolds. Geom. Funct. Anal. 16(4), 838–849 (2006)

    Article  MathSciNet  Google Scholar 

  23. Fradelizi, M., Giannopoulos, A., Meyer, M.: Some inequalities about mixed volumes. Israel J. Math. 135, 157–179 (2003)

    Article  MathSciNet  Google Scholar 

  24. Fradelizi, M., Madiman, M., Zvavitch, A.: Sumset Estimates in Convex Geometry. arXiv:2206.01565 (2022)

  25. Fulton, W.: Introduction to toric varieties. In: Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton. The William H. Roever Lectures in Geometry (1993)

  26. Giannopoulos, A., Hartzoulaki, M., Paouris, G.: On a local version of the Aleksandrov–Fenchel inequality for the quermassintegrals of a convex body. Proc. Am. Math. Soc. 130(8), 2403–2412 (2002)

    Article  MathSciNet  Google Scholar 

  27. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, 2nd edn. In: Grundlehren der mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 224. Springer, Berlin (1983)

  28. Guan, P., Ma, X.-N., Trudinger, N., Zhu, X.: A form of Alexandrov–Fenchel inequality. Pure Appl. Math. Q. 6(4), 999–1012. Special Issue: In honor of Joseph J. Kohn, part 2 (2010)

  29. Hu, J., Xiao, J.: Hard Lefschetz Properties, Complete Intersections and Numerical Dimensions. arXiv:2212.13548 (2022)

  30. Huh, J.: Combinatorics and Hodge theory. In: Proceedings of the International Congress of Mathematicians (2022)

  31. Imre, Z.: Ruzsa, the Brunn–Minkowski inequality and nonconvex sets. Geom. Dedic. 67(3), 337–348 (1997)

    Article  Google Scholar 

  32. Jiang, C., Li, Z.: Algebraic Reverse Khovanskii–Teissier Inequality via Okounkov Bodies. arXiv:2112.02847 (2021)

  33. Kotrbaty, J., Wannerer, T.: From Harmonic Analysis of Translation-invariant Valuations to Geometric Inequalities for Convex Bodies. arXiv:2202.10116 (2022)

  34. Lehmann, B., Xiao, J.: Correspondences between convex geometry and complex geometry. Épijournal Géom. Algébrique 1(art. 6), 29 (2017)

  35. McMullen, P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. Lond. Math. Soc. (3) 35(1), 113–135 (1977)

    Article  MathSciNet  Google Scholar 

  36. Nowak, L., O’Melveny, P., Ross, D.: Mixed Volumes of Normal Complexes. arXiv:2301.05278 (2023)

  37. Plunnecke, H.: Eine zahlentheoretische anwendung der graphentheorie. J. Reine Angew. Math. 243, 171–183 (1970)

    MathSciNet  Google Scholar 

  38. Popovici, D.: Sufficient bigness criterion for differences of two NEF classes. Math. Ann. 364(1–2), 649–655 (2016)

    Article  MathSciNet  Google Scholar 

  39. Ross, J., Toma, M.: Hodge–Riemann bilinear relations for Schur classes of ample vector bundles. arXiv:1905.13636 Ann. Sci. Éc. Norm. Supér. (to appear) (2019)

  40. Ross, J., Toma, M.: On Hodge–Riemann Cohomology Classes. arXiv:2106.11285 (2021)

  41. Ross, J., Toma, M.: Hodge–Riemann Relations for Schur Classes in the Linear and Kähler Cases. arXiv:2202.13816. IMRN (to appear) (2022)

  42. Ross, J., Süss, H., Wannerer, T.: Dually Lorentzian Polynomials. arXiv:2304.08399 (2023)

  43. Ruzsa, I.Z.: An application of graph theory to additive number theory. Sci. Ser. A Math. Sci. (N.S.) 3, 97–109 (1989)

    MathSciNet  Google Scholar 

  44. Schneider, R.: Convex bodies: the Brunn–Minkowski theory, expanded edition. In: Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

  45. Shenfeld, Y., van Handel, R.: Mixed volumes and the Bochner method. Proc. Am. Math. Soc. 147(12), 5385–5402 (2019)

    Article  MathSciNet  Google Scholar 

  46. Shenfeld, Y., van Handel, R.: The Extremals of the Alexandrov–Fenchel Inequality for Convex Polytopes. arXiv:2011.04059. Acta. Math. (to appear) (2020)

  47. Shenfeld, Y., van Handel, R.: The extremals of Minkowski’s quadratic inequality. Duke Math. J. 171(4), 957–1027 (2022)

    Article  MathSciNet  Google Scholar 

  48. Tao, T., Van, V.: Cambridge Studies in Advanced Mathematics. Additive combinatorics, vol. 105. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  49. Witt Nyström, D.: Duality between the pseudoeffective and the movable cone on a projective manifold. J. Am. Math. Soc. 32(3), 675–689 (2019) (with an appendix by Sébastien Boucksom)

  50. Xiao, J.: Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds. Ann. Inst. Fourier (Grenoble) 65(3), 1367–1379 (2015)

    Article  MathSciNet  Google Scholar 

  51. Xiao, J.: Bézout-type inequality in convex geometry. Int. Math. Res. Not. IMRN 16, 4950–4965 (2019)

    Article  Google Scholar 

  52. Xiao, J.: Hodge-index type inequalities, hyperbolic polynomials, and complex Hessian equations. Int. Math. Res. Not. IMRN 15, 11652–11669 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2021YFA1002300) and National Natural Science Foundation of China (No. 11901336). We would like to thank Julius Ross for kindly sharing the work on dually Lorentzian polynomials with us. We also thank the referee for the careful reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xiao.

Ethics declarations

Ethical statement

The authors of the submitted manuscript “Intersection theoretic inequalities via Lorentzian polynomials” confirm that the manuscript complies to all the Ethical Rules applicable for the journal Mathematische Annalen.

Additional information

In memory of Jean-Pierre Demailly.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Xiao, J. Intersection theoretic inequalities via Lorentzian polynomials. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02822-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02822-y

Navigation