Skip to main content
Log in

Completeness of derived interleaving distances and sheaf quantization of non-smooth objects

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We develop sheaf-theoretic methods to deal with non-smooth objects in symplectic geometry. We show the completeness of a derived category of sheaves with respect to the interleaving distance and construct a sheaf quantization of a Hamiltonian homeomorphism. We also develop Lusternik–Schnirelmann theory in the microlocal theory of sheaves. With these new sheaf-theoretic methods, we prove an Arnold-type theorem for the image of a compact exact Lagrangian submanifold under a Hamiltonian homeomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. Asano, T., Ike, Y.: Persistence-like distance on Tamarkin’s category and symplectic displacement energy. J. Symplect. Geom. 18(3), 613–649 (2020). https://doi.org/10.4310/JSG.2020.v18.n3.a1

    Article  MathSciNet  Google Scholar 

  2. Asano, T., Ike, Y.: Sheaf quantization and intersection of rational Lagrangian immersions. Ann. Inst. Fourier 73(4), 1533–1587 (2023). https://doi.org/10.5802/aif.3554

    Article  MathSciNet  Google Scholar 

  3. Banyaga, A.: Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helv. 53(1), 174–227 (1978)

    Article  MathSciNet  Google Scholar 

  4. Berkouk, N., Ginot, G.: A derived isometry theorem for sheaves. Adv. Math. 394, 108033 (2021). https://doi.org/10.1016/j.aim.2021.108033

    Article  MathSciNet  Google Scholar 

  5. Berkouk, N., Petit, F.: Ephemeral persistence modules and distance comparison. Algebr. Geom. Topol. 21(1), 247–277 (2021). https://doi.org/10.2140/agt.2021.21.247

    Article  MathSciNet  Google Scholar 

  6. Berkouk, N., Ginot, G., Oudot, S.: Level-sets persistence and sheaf theory, preprint (2019). arXiv:1907.09759

  7. Biran, P., Cornea, O., Zhang, J.: Triangulation and persistence: Algebra 101, preprint (2021). arXiv:2104.12258

  8. Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories. Compos. Math. 86(2), 209–234 (1993)

    MathSciNet  Google Scholar 

  9. Buhovsky, L., Humilière, V., Seyfaddini, S.: A \(C^0\) counterexample to the Arnold conjecture. Invent. Math. 213(2), 759–809 (2018). https://doi.org/10.1007/s00222-018-0797-x

    Article  ADS  MathSciNet  Google Scholar 

  10. Buhovsky, L., Humilière, V., Seyfaddini, S.: The action spectrum and \(C^0\) symplectic topology. Math. Ann. 380(1), 293–316 (2021). https://doi.org/10.1007/s00208-021-02183-w

    Article  MathSciNet  Google Scholar 

  11. Buhovsky, L., Humilière, V., Seyfaddini, S.: An Arnold-type principle for non-smooth objects. J. Fixed Point Theory Appl. 24(2), 24 (2022). https://doi.org/10.1007/s11784-022-00934-z

    Article  MathSciNet  Google Scholar 

  12. Chiu, S.F.: Quantum speed limit and categorical energy relative to microlocal projector. J. Topol. Anal. (2023). https://doi.org/10.1142/S1793525323500218

    Article  Google Scholar 

  13. Cruz, J.: Metric limits in categories with a flow, preprint (2019). arXiv:1901.04828

  14. Frauenfelder, U., Schlenk, F.: Hamiltonian dynamics on convex symplectic manifolds. Isr. J. Math. 159, 1–56 (2007). https://doi.org/10.1007/s11856-007-0037-3

    Article  MathSciNet  Google Scholar 

  15. Fukaya, K.: Gromov–Hausdorff distance between filtered \(A_\infty \) categories 1: Lagrangian Floer theory, preprint (2021). arXiv:2106.06378

  16. Guillermou, S.: Quantization of conic Lagrangian submanifolds of cotangent bundles, preprint (2012). arXiv:1212.5818

  17. Guillermou, S.: The Gromov–Eliashberg theorem by microlocal sheaf theory, preprint (2013). arXiv:1311.0187

  18. Guillermou, S.: Sheaves and symplectic geometry of cotangent bundles. Astérisque 440 (2023)

  19. Guillermou, S., Schapira, P.: Microlocal theory of sheaves and Tamarkin’s non displaceability theorem. In: Homological Mirror Symmetry and Tropical Geometry, Lect. Notes Unione Mat. Ital., vol. 15. Springer, pp. 43–85 (2014). https://doi.org/10.1007/978-3-319-06514-4_3

  20. Guillermou, S., Viterbo, C.: The singular support of sheaves is \(\gamma \)-coisotropic, preprint (2022). arXiv:2203.12977

  21. Guillermou, S., Kashiwara, M., Schapira, P.: Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems. Duke Math. J. 161(2), 201–245 (2012). https://doi.org/10.1215/00127094-1507367

    Article  MathSciNet  Google Scholar 

  22. Humilière, V., Vichery, N.: Cuplength estimates via microlocal theory of sheaves, in preparation (2022)

  23. Kashiwara, M., Schapira, P.: Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292. Springer, Berlin (1990). https://doi.org/10.1007/978-3-662-02661-8

  24. Kashiwara, M., Schapira, P.: Categories and sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 332. Springer, Berlin (2006). https://doi.org/10.1007/3-540-27950-4

  25. Kashiwara, M., Schapira, P.: Persistent homology and microlocal sheaf theory. J. Appl. Comput. Topol. 2(1–2), 83–113 (2018). https://doi.org/10.1007/s41468-018-0019-z

    Article  MathSciNet  Google Scholar 

  26. Kashiwara, M., Schapira, P.: Piecewise linear sheaves. Int. Math. Res. Not. 15, 11565–11584 (2021). https://doi.org/10.1093/imrn/rnz145

    Article  MathSciNet  Google Scholar 

  27. Kawamoto, Y.: On \(C^0\)-continuity of the spectral norm for symplectically non-aspherical manifolds. Int. Math. Res. Not. 2022(21), 17187–17230 (2022). https://doi.org/10.1093/imrn/rnab206

    Article  Google Scholar 

  28. Kislev, A., Shelukhin, E.: Bounds on spectral norms and barcodes. Geom. Topol. 25(7), 3257–3350 (2022). https://doi.org/10.2140/gt.2021.25.3257

    Article  MathSciNet  Google Scholar 

  29. Le Roux, F., Seyfaddini, S., Viterbo, C.: Barcodes and area-preserving homeomorphisms. Geom. Topol. 25(6), 2713–2825 (2021). https://doi.org/10.2140/gt.2021.25.2713

    Article  MathSciNet  Google Scholar 

  30. Li, W.: Estimating Reeb chords using microlocal sheaf theory, preprint (2021). arXiv:2106.04079

  31. Nadler, D.: Microlocal branes are constructible sheaves. Sel. Math. New Ser. 15(4), 563–619 (2009). https://doi.org/10.1007/s00029-009-0008-0

    Article  MathSciNet  Google Scholar 

  32. Nadler, D., Zaslow, E.: Constructible sheaves and the Fukaya category. J. Am. Math. Soc. 22(1), 233–286 (2009). https://doi.org/10.1090/S0894-0347-08-00612-7

    Article  MathSciNet  Google Scholar 

  33. Oh, Y.G.: Symplectic topology as the geometry of action functional. I. Relative Floer theory on the cotangent bundle. J. Differ. Geom. 46(3), 499–577 (1997). https://doi.org/10.4310/jdg/1214459976

    Article  MathSciNet  Google Scholar 

  34. Oh, Y.G.: Symplectic topology as the geometry of action functional. II. Pants product and cohomological invariants. Commun. Anal. Geom. 7(1), 1–54 (1999). https://doi.org/10.4310/CAG.1999.v7.n1.a1

    Article  MathSciNet  Google Scholar 

  35. Oh, Y.G.: Normalization of the hamiltonian and the action spectrum. J. Korean Math. Soc. 42, 65–83 (2005). https://doi.org/10.4134/JKMS.2005.42.1.065

    Article  MathSciNet  Google Scholar 

  36. Oh, Y.G., Müller, S.: The group of Hamiltonian homeomorphisms and \(C^0\)-symplectic topology. J. Symplect. Geom. 5(2), 167–219 (2007). https://doi.org/10.4310/JSG.2007.v5.n2.a2

    Article  Google Scholar 

  37. Petit, F., Schapira, P.: Thickening of the diagonal and interleaving distance. Sel. Math. New Ser. 29(5), 70 (2023). https://doi.org/10.1007/s00029-023-00875-6

    Article  MathSciNet  Google Scholar 

  38. Petit, F., Schapira, P., Waas, L.: A property of the interleaving distance for sheaves (2021). arXiv:2108.13018

  39. Polterovich, L.: The Geometry of the Group of Symplectic Diffeomorphism. Birkhäuser, Basel (2012)

    Google Scholar 

  40. Polterovich, L., Shelukhin, E.: Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules. Sel. Math. New Ser. 22(1), 227–296 (2016). https://doi.org/10.1007/s00029-015-0201-2

    Article  MathSciNet  Google Scholar 

  41. Robalo, M., Schapira, P.: A lemma for microlocal sheaf theory in the \(\infty \)-categorical setting. Publ. Res. Inst. Math. Sci. 54(2), 379–391 (2018). https://doi.org/10.4171/PRIMS/54-2-5

    Article  MathSciNet  Google Scholar 

  42. Scoccola, L.N.: Locally persistent categories and metric properties of interleaving distances. Ph.D thesis, The University of Western Ontario (2020)

  43. Spaltenstein, N.: Resolutions of unbounded complexes. Compos. Math. 65(2), 121–154 (1988)

    MathSciNet  Google Scholar 

  44. Tamarkin, D.: Microlocal condition for non-displaceability. In: Algebraic and Analytic Microlocal Analysis. Springer International Publishing, pp. 99–223 (2018). https://doi.org/10.1007/978-3-030-01588-6_3

  45. Usher, M.: Observations on the Hofer distance between closed subsets. Math. Res. Lett. 22(6), 1805–1820 (2015). https://doi.org/10.4310/MRL.2015.v22.n6.a14

    Article  MathSciNet  Google Scholar 

  46. Usher, M., Zhang, J.: Persistent homology and Floer–Novikov theory. Geom. Topol. 20(6), 3333–3430 (2016). https://doi.org/10.2140/gt.2016.20.3333

    Article  MathSciNet  Google Scholar 

  47. Viterbo, C.: Symplectic topology as the geometry of generating functions. Math. Ann. 292(1), 685–710 (1992). https://doi.org/10.1007/BF01444643

    Article  MathSciNet  Google Scholar 

  48. Viterbo, C.: On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows. Int. Math. Res. Not. 2006, 34028 (2006). https://doi.org/10.1155/IMRN/2006/34028

    Article  MathSciNet  Google Scholar 

  49. Viterbo, C.: Sheaf quantization of Lagrangians and Floer cohomology, preprint (2019). arXiv:1901.09440

  50. Zhang, J.: Quantitative Tamarkin Theory, CRM Short Courses. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-37888-2

Download references

Acknowledgements

The authors would like to express their gratitude to Vincent Humilière for fruitful discussion on many parts of this paper. They also thank Stéphane Guillermou and Takahiro Saito for helpful discussion, and Yusuke Kawamoto for drawing their attention to applications of the microlocal theory of sheaves to \(C^0\)-symplectic geometry. They are also grateful to Wenyuan Li, Tatsuki Kuwagaki, Morimichi Kawasaki, and Pierre Schapira for their helpful comments. The authors also thank the anonymous referees for their helpful comments, which improved many parts of the paper. TA was supported by Innovative Areas Discrete Geometric Analysis for Materials Design (Grant No. 17H06461). YI was supported by JSPS KAKENHI (Grant No. 21K13801 and 22H05107) and ACT-X, Japan Science and Technology Agency (Grant No. JPMJAX1903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Ike.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Hamiltonian stability with support conditions

A Hamiltonian stability with support conditions

In this appendix, we prove an estimate by the oscillation norm \(\Vert H\Vert _{\textrm{osc},A}\) of H restricted to a non-empty closed subset A, in the context of the sheaf-theoretic energy estimate.

1.1 A.1 Sheaf quantization of 2-parameter Hamiltonian isotopies

We will use the sheaf quantization of a 2-parameter Hamiltonian isotopy. For that purpose, we first state the main result of [21] in a general form. Let N be a connected non-empty manifold and W a contractible open subset of \({\mathbb {R}}^n\) with the coordinate system \((w_1,\dots ,w_n)\) containing 0. Let us consider \(\psi =(\psi _w)_{w \in W} :\mathring{T}^*N \times W \rightarrow \mathring{T}^*N\) be a homogeneous Hamiltonian isotopy, that is, a \(C^\infty \)-map satisfying (1) \(\psi _w\) is homogeneous symplectic isomorphism for each \(w \in W\) and (2) \(\psi _0={\text {id}}_{\mathring{T}^*N}\). We can define a vector-valued homogeneous function \(h :\mathring{T}^*N \times W \rightarrow {\mathbb {R}}^n\) by \(h=(h_1,\dots ,h_n)\) with

$$\begin{aligned} \frac{\partial \psi _w}{\partial w_i} \circ \psi _{w}^{-1} = X_{h_i(\bullet ,w)}, \end{aligned}$$
(A.1)

where \(X_{h_i(\bullet ,w)}\) is the Hamiltonian vector field of the function \(h_i(\bullet ,w) :\mathring{T}^*N \rightarrow {\mathbb {R}}\). By using the function h, we define a conic Lagrangian submanifold \(\Lambda _\psi \) of \(\mathring{T}^*(N^2 \times W)\) by

$$\begin{aligned} \Lambda _\psi \,{:}{=}\,\left\{ \left( \psi _w(y;\eta ), (y;-\eta ), (u;-h(\psi _w(y;\eta ),w)) \right) \mathrel {}|\mathrel {}(y;\eta ) \in \mathring{T}^*N, w \in W \right\} \nonumber \\ \end{aligned}$$
(A.2)

The main theorem of [21] is the following.

Theorem A.1

([21, Thm. 3.7 and Rem. 3.9]) Let \(\psi :\mathring{T}^*N \times W \rightarrow \mathring{T}^*N\) be a homogeneous Hamiltonian isotopy and set \(\Lambda _\psi \) as above. Then there exists a unique simple object \(\widetilde{K} \in \textsf{D}({\textbf{k}}_{N^2 \times W})\) such that \({{\,\mathrm{{\mathring{{{\,\mathrm{{{\text {SS}}}}\,}}}}}\,}}(\widetilde{K})=\Lambda _{\psi }\) and \(\widetilde{K}|_{N^2 \times \{0\}} \simeq {\textbf{k}}_{\Delta _{N}}\).

For a non-homogeneous compactly supported Hamiltonian isotopy, we can associate a sheaf by homogenizing the isotopy. In the 1-parameter case, it is done as in Definition 3.10. Below we will explain how to homogenize a 2-parameter Hamiltonian isotopy.

Let \((G_{s',s})_{(s',s) \in I^2}\) be a 2-parameter family of compactly supported smooth functions on \(T^*M\). A 2-parameter family of diffeomorphisms \((\phi _{s',s})_{(s',s)\in I^2}\) is determined by \(\phi _{s',0}={\text {id}}_{T^*M} \) and \(\frac{\partial \phi _{s',s} }{\partial s}\circ \phi _{s',s}^{-1}=X_{G_{s',s}}\), where \(X_{G_{s',s}}\) is the Hamiltonian vector field corresponding to the function \(G_{s',s}\). We set \(\widehat{G}_{s',s}(x,t;\xi ,\tau ) \,{:}{=}\,\tau G_{s',s}(x;\xi /\tau )\) and define a 2-parameter homogeneous Hamiltonian isotopy \(\widehat{\phi }=(\widehat{\phi }_{s',s})_{s',s}\) by

$$\begin{aligned} {\left\{ \begin{array}{ll} \widehat{\phi }_{s',0}={\text {id}}_{\mathring{T}^*(M \times {\mathbb {R}}_t)}, \\ \frac{\partial \widehat{\phi }_{s',s}}{\partial s} \circ \widehat{\phi }_{s',s}^{-1} = X_{\widehat{G}_{s',s}}. \end{array}\right. } \end{aligned}$$
(A.3)

Then, we have

$$\begin{aligned} \Lambda _{\widehat{\phi }}= & {} \left\{ \left( \widehat{\phi }_{s',s}(y;\eta ), (y;-\eta ), (s'; -\widehat{F}_{s',s}(\widehat{\phi }_{s',s}(y;\eta ))), (s;- \widehat{G}_{s',s}(\widehat{\phi }_{s',s}(y;\eta ))) \right) \bigg | \right. \nonumber \\{} & {} \quad \left. (y;\eta ) \in \mathring{T}^*(M \times {\mathbb {R}}), s',s \in I \right\} , \end{aligned}$$
(A.4)

where the 2-parameter family of homogeneous functions \((\widehat{F}_{s',s})_{s',s}\) is determined by \(\frac{\partial \widehat{\phi }_{s',s}}{\partial s'} \circ \widehat{\phi }_{s',s}^{-1}=X_{\widehat{F}_{s',s}}\). By the construction of \(\widehat{\phi }\), there exists a 2-parameter family of timewise compactly supported functions \((F_{s',s})_{(s',s) \in I^2}\) satisfying \(\widehat{F}_{s',s}(x,t;\xi ,\tau )=\tau F_{s',s}(x;\xi /\tau )\) and \(\frac{\partial \phi _{s',s} }{\partial s'}\circ \phi _{s',s}^{-1}=X_{F_{s',s}}\). A calculation in [39] or [35] (see also [3]) shows that

$$\begin{aligned} \frac{\partial F_{s',s}}{\partial s}=\frac{\partial G_{s',s}}{\partial s'}-\{F_{s',s},G_{s',s}\}, \end{aligned}$$
(A.5)

where \(\{-,-\}\) is the Poisson bracket. In this case, we can apply Theorem A.1 to the homogeneous Hamiltonian isotopy \(\widehat{\phi }\) and obtain a simple object \(\widetilde{K}\) satisfying \({{\,\mathrm{{\mathring{{{\,\mathrm{{{\text {SS}}}}\,}}}}}\,}}(\widetilde{K})=\Lambda _{\widehat{\phi }}\). By using the map \(q :(M \times {\mathbb {R}})^2 \times I^2 \rightarrow M^2 \times {\mathbb {R}}_t \times I^2, (x_1,t_1,x_2,t_2,s',s) \mapsto (x_1,x_2,t_1-t_2,s',s)\), we also obtain an equivalence similar to (3.26). Hence, we can define \(K \in \textsf{D}({\textbf{k}}_{M^2 \times {\mathbb {R}}\times I^2})\) by the condition \({{\,\mathrm{{\mathring{{{\,\mathrm{{{\text {SS}}}}\,}}}}}\,}}(K)=q_d q_\pi ^{-1} (\Lambda _{\widehat{\phi }})\) and \(\mathcal {K}\,{:}{=}\,P_l(K) \in \mathcal {D}(M^2 \times I^2)\), which we call the sheaf quantization of \((\phi _{s',s})_{(s',s)\in I^2}\).

1.2 Statement and proof

For a closed subset A of \(T^*M\), we define a full subcategory \(\mathcal {D}_A(M)\) of \(\mathcal {D}(M)\) by

$$\begin{aligned} \mathcal {D}_A(M) \,{:}{=}\,\{ F \in \mathcal {D}(M) \mid {{\,\mathrm{{{\text {SS}}}}\,}}(F) \cap \{ \tau >0\} \subset \rho _t^{-1}(A) \}, \end{aligned}$$
(A.6)

where \(\rho _t :T^*M \times T^*_{\tau >0}{\mathbb {R}}_t \rightarrow T^*M, (x,t;\xi ,\tau ) \mapsto (x;\xi /\tau )\).

Let \(\mathcal {K}^H \in \mathcal {D}(M^2 \times I)\) be the sheaf quantization associated with a timewise compactly supported function \(H :T^*M \times I \rightarrow {\mathbb {R}}\) and \(F \in \mathcal {D}_A(M)\) with A being a closed subset of \(T^*M\). Then we get \(\mathcal {K}^H \bullet F \in \mathcal {D}(M \times I)\) and find that

$$\begin{aligned} \mathcal {K}^H_s \bullet F \simeq (\mathcal {K}^H \bullet F)|_{M \times \{s\} \times {\mathbb {R}}_t} \in \mathcal {D}_{\phi ^H_s(A)}(M) \quad \text {for any}\, s \in I. \end{aligned}$$
(A.7)

We shall estimate the distance between \(F \in \mathcal {D}_A(M)\) and \(\mathcal {K}^H_1 \bullet F \in \mathcal {D}_{\phi ^H_1(A)}(M)\) up to translation. See also Remark A.4 for a more straightforward but weaker case.

Theorem A.2

Let A be a non-empty closed subset of \(T^*M\) and \(F \in \mathcal {D}_A(M)\). Moreover, let \(H :T^*M \times I \rightarrow {\mathbb {R}}\) be a timewise compactly supported function. Then for a continuous function \(f:I\rightarrow {\mathbb {R}}\), one has

$$\begin{aligned} \begin{aligned}&d_{\mathcal {D}(M)}(F,T_{-c} \mathcal {K}^H_1 \bullet F) \\&\quad \le {} \int _0^1 \left( \max \left\{ \max _{p \in \phi ^H_s(A)}H_s(p), f(s) \right\} -\min \left\{ \min _{p \in \phi ^H_s(A)}H_s(p), f(s)\right\} \right) ds \end{aligned}\qquad \end{aligned}$$
(A.8)

where \(c=\int _0^1 f(s) ds\).

Remark A.3

If we take \(f\equiv 0\), we obtain

$$\begin{aligned} \begin{aligned}&d_{\mathcal {D}(M)}(F, \mathcal {K}^H_1 \bullet F) \\&\quad \le {} \int _0^1 \left( \max \left\{ \max _{p \in \phi ^H_s(A)}H_s(p), 0 \right\} -\min \left\{ \min _{p \in \phi ^H_s(A)}H_s(p), 0\right\} \right) ds. \end{aligned} \end{aligned}$$
(A.9)

Let \(c \in {\mathbb {R}}\) be a real number satisfying

$$\begin{aligned} \int _0^1 \min _{p \in \phi ^H_s(A)}H_s(p) ds\le c \le \int _0^1 \max _{p \in \phi ^H_s(A)}H_s(p) ds. \end{aligned}$$
(A.10)

Then we can take f such that \(c=\int _0^1 f(s) ds\) and

$$\begin{aligned} \min _{p \in \phi ^H_s(A)}H_s(p) \le f(s)\le \max _{p \in \phi ^H_s(A)}H_s(p) \end{aligned}$$
(A.11)

for any \(s \in I\). Hence, by Theorem A.2, we get

$$\begin{aligned} d_{\mathcal {D}(M)}(F, T_{-c} \mathcal {K}^H_1 \bullet F) \le \int _0^1 \left( \max _{p \in \phi ^H_s(A)}H_s(p) - \min _{p \in \phi ^H_s(A)}H_s(p) \right) ds.\qquad \end{aligned}$$
(A.12)

For simplicity, we introduce a symbol for the right-hand side of (A.8). For a function \(H :T^*M \times I \rightarrow {\mathbb {R}}\), a function \(f :I \rightarrow {\mathbb {R}}\), and a non-empty closed subset A of \(T^*M\), we set

$$\begin{aligned} B(H,f,A) \,{:}{=}\,\int _0^1 \left( \max \left\{ \max _{p \in \phi ^H_s(A)}H_s(p), f(s) \right\} -\min \left\{ \min _{p \in \phi ^H_s(A)}H_s(p), f(s) \right\} \right) ds.\nonumber \\ \end{aligned}$$
(A.13)

Proof of Theorem A.2

Let \(\varepsilon >0\). We can take a smooth family \((\rho _{a,b}:{\mathbb {R}}\rightarrow {\mathbb {R}})_{a,b}\) of smooth functions parametrized by \(a,b\in {\mathbb {R}}\) with \(a\le b\) such that

  1. (1)

    \(\rho _{a,b}(y)=y\) on a neighborhood of [ab],

  2. (2)

    \(a-\varepsilon \le \inf _y \rho _{a,b}(y) < \sup _y \rho _{a,b}(y) \le b+\varepsilon \).

Recall that I denotes an open interval containing the closed interval [0, 1]. We take smooth functions \(M, m :I\rightarrow {\mathbb {R}}\) satisfying

$$\begin{aligned} \max _{p \in \phi ^H_s(A)}H_s(p) +\frac{\varepsilon }{2} \le M(s) \le \max _{p \in \phi ^H_s(A)}H_s(p) +\varepsilon \end{aligned}$$
(A.14)

and

$$\begin{aligned} \min _{p \in \phi ^H_s(A)}H_s(p) -\varepsilon \le m(s) \le \min _{p \in \phi ^H_s(A)}H_s(p)-\frac{\varepsilon }{2}. \end{aligned}$$
(A.15)

Fix \(R>0\) sufficiently large so that \(R> \max _{p,s}H_s(p) -\min _{p,s}H_s(p) +2\varepsilon \). Define \(a(s', s)\,{:}{=}\,m(s)-Rs', b(s',s)\,{:}{=}\,M(s)+Rs'\) for \((s',s)\in I^2\). We may assume that \(I\subset (-\frac{\varepsilon }{2R},+\infty )\) by taking I smaller if necessary, and hence that

$$\begin{aligned} a(s', s) \le \min _{p \in \phi ^H_s(A)}H_s(p) \le \max _{p \in \phi ^H_s(A)}H_s(p) \le b(s',s) \end{aligned}$$
(A.16)

for all \((s',s)\in I^2\). Take a smooth function \(\tilde{f}:I\rightarrow {\mathbb {R}}\) such that \(\Vert \tilde{f}-f\Vert _{C^0} \le \varepsilon \). By shrinking I, we may assume that \(\bigcup _{s} {{\,\mathrm{{\text {supp}}}\,}}(H_s)\) is relatively compact. Then we can also take a compactly supported smooth cut-off function \(\chi :T^*M\rightarrow [0,1]\) such that \(\chi \equiv 1\) on a neighborhood of \(\bigcup _{s} {{\,\mathrm{{\text {supp}}}\,}}(H_s)\). Using these functions, we define a function \(G=(G_{s',s})_{s',s \in I^2} :T^*M \times I^2 \rightarrow {\mathbb {R}}\) by

$$\begin{aligned} G_{s',s}\,{:}{=}\,\left( \rho _{a(s',s),b(s',s)}\circ H_s - (1-s') \tilde{f}(s)\right) \chi . \end{aligned}$$
(A.17)

A 2-parameter family \((\phi _{s',s})_{(s',s)\in I^2}\) of Hamiltonian diffeomorphisms is determined by \(\phi _{s',0}={\text {id}}_{T^*M} \) and \(\frac{\partial \phi _{s',s} }{\partial s}\circ \phi _{s',s}^{-1}=X_{G_{s',s}}\), where \(X_{G_{s',s}}\) is the Hamiltonian vector field corresponding to the function \(G_{s',s}\). Note that \(G_{1,s}=H_s\) and \(\phi _{s',s}\) is independent of \(s'\) on a neighborhood U of A. Moreover, we have

$$\begin{aligned}{} & {} \int _0^1 \left( \max _{p \in T^*M} G_{0,s}(p) - \min _{p \in T^*M} G_{0,s}(p) \right) ds \nonumber \\{} & {} \quad \le {} \int _0^1 \left( \max _{p \in T^*M} \left( \rho _{m(s),M(s)} \circ H_s(p) - \tilde{f}(s) \right) \chi (p) - \min _{p \in T^*M} \left( \rho _{m(s),M(s)} \circ H_s(p) - \tilde{f}(s) \right) \chi (p) \right) ds\nonumber \\{} & {} \quad \le {} \int _0^1 \left( \max \left\{ \max _{p \in \phi ^H_s(A)} \left( H_s(p) - \tilde{f}(s) \right) , 0 \right\} -\min \left\{ \min _{p \in \phi ^H_s(A)} \left( H_s(p) - \tilde{f}(s) \right) , 0\right\} \right) ds +2\varepsilon \nonumber \\{} & {} \quad = {} \int _0^1 \left( \max \left\{ \max _{p \in \phi ^H_s(A)} H_s(p), \tilde{f}(s) \right\} -\min \left\{ \min _{p \in \phi ^H_s(A)} H_s(p), \tilde{f}(s) \right\} \right) ds +2\varepsilon \nonumber \\{} & {} \quad \le {} B(H,f,A) +4\varepsilon . \end{aligned}$$
(A.18)

For \(s' \in I\), we set \(G_{s'} \,{:}{=}\,G_{s',\bullet } :T^*M \times I \rightarrow {\mathbb {R}}\). Then, by Theorem 5.1 and the natural inequality for the distance with respect to functorial operations (see (3.11)), we obtain

$$\begin{aligned} d_{\mathcal {D}(M)}(F, \mathcal {K}^{G_0}_1 \bullet F) = d_{\mathcal {D}(M)}(\mathcal {K}^0_1 \bullet F, \mathcal {K}^{G_0}_1 \bullet F) \le B(H,f,A) +4\varepsilon .\qquad \end{aligned}$$
(A.19)

We set \(\tilde{c}(s)\,{:}{=}\,\int _0^s \tilde{f}(t) dt\) and claim that \(\mathcal {K}^{G_0}_1 \bullet F \simeq T_{-\tilde{c}(1)}\mathcal {K}^{G_1}_1 \bullet F\). By the result recalled in appendix A.1, we can construct the sheaf quantization \(\mathcal {K}\in \mathcal {D}(M^2 \times I^2)\) of the 2-parameter family of diffeomorphisms \((\phi _{s',s})_{s',s}\). We shall use the same notation as in appendix A.1. Then, \(F_{s',0}=0\) and \(F_{\bullet ,s}|_{\phi _{1,s}(U)\times I}:\phi _{1,s}(U)\times I\rightarrow {\mathbb {R}}, (p,s')\mapsto F_{s',s}(p)\) is locally constant for each s. By (A.5), we find that \(\frac{\partial F_{s',s}}{\partial s}=\frac{\partial G_{s',s}}{\partial s'}=\tilde{f}(s)\) on \(\bigcup _s \phi _{1,s}(U)\times I\times \{s\}\) and that \(F_{s',s} = \int _0^s \tilde{f}(t) dt=\tilde{c}(s)\) there. We define \(\mathcal {H}\,{:}{=}\,\mathcal {K}\bullet F \in \mathcal {D}(M \times I^2)\). Then, by the microsupport estimate, we have

$$\begin{aligned} \begin{aligned} {{\,\mathrm{{{\text {SS}}}}\,}}(\mathcal {H})&\subset \left\{ \left( \widehat{\phi }_{s',s}(x,t;\xi ,\tau ), (s';-\tau \tilde{c}(s)), (s;-\tau G_{s',s}(\phi _{s',s}(x;\xi /\tau ))) \right) \; \bigg | \right. \\&\qquad \quad \left. (x,t;\xi ,\tau ) \in {{\,\mathrm{{\mathring{{{\,\mathrm{{{\text {SS}}}}\,}}}}}\,}}(F), s',s \in I \right\} \cup 0_{M \times {\mathbb {R}}\times I^2}. \end{aligned} \end{aligned}$$
(A.20)

Hence, \(M \times {\mathbb {R}}\times I \times \{1\}\) is non-characteristic for \(\mathcal {H}\) and we get

$$\begin{aligned} \begin{aligned} {{\,\mathrm{{{\text {SS}}}}\,}}(\mathcal {H}|_{M \times {\mathbb {R}}\times I \times \{1\}}) \subset&\left\{ \left( \widehat{\phi }_{s',1}(x,t;\xi ,\tau ), (s';- \tilde{c}(1) \tau ) \right) \; \bigg | \right. \\&\quad \left. (x,t;\xi ,\tau ) \in {{\,\mathrm{{\mathring{{{\,\mathrm{{{\text {SS}}}}\,}}}}}\,}}(F), s' \in I \right\} \cup 0_{M \times {\mathbb {R}}\times I}. \end{aligned} \end{aligned}$$
(A.21)

Define a diffeomorphism \(\varphi :M \times {\mathbb {R}}\times I \xrightarrow {\sim }M \times {\mathbb {R}}\times I, (x,t,s') \mapsto (x,t-\tilde{c}(1)s', s')\). Then we have \({{\,\mathrm{{{\text {SS}}}}\,}}(\varphi _* \mathcal {H}|_{M \times {\mathbb {R}}\times I \times \{1\}}) \subset T^*(M \times {\mathbb {R}}) \times 0_{I}\), which shows \(\varphi _* \mathcal {H}|_{M \times {\mathbb {R}}\times I \times \{1\}}\) is the pull-back of a sheaf on \(M \times {\mathbb {R}}\) by [23, Prop. 5.4.5]. In particular,

$$\begin{aligned} \begin{aligned} \mathcal {K}^{G_0}_1 \bullet F&= \mathcal {H}|_{M \times {\mathbb {R}}\times \{0\} \times \{1\}} \\&\simeq (\varphi _* \mathcal {H}|_{M \times {\mathbb {R}}\times I \times \{1\}})|_{\{ s'=0\}} \\&\simeq (\varphi _* \mathcal {H}|_{M \times {\mathbb {R}}\times I \times \{1\}})|_{\{ s'=1\}} \\&\simeq T_{-\tilde{c}(1)}\mathcal {H}|_{M \times {\mathbb {R}}\times \{1\} \times \{1\}} = T_{-\tilde{c}(1)} \mathcal {K}^{G_1}_1 \bullet F. \end{aligned} \end{aligned}$$
(A.22)

Since \(|c-\tilde{c}(1)| \le \varepsilon \), we have \(d_{\mathcal {D}(M)}(T_{-c}\mathcal {K}^H_1 \bullet F, T_{-\tilde{c}(1)}\mathcal {K}^H_1 \bullet F) \le \varepsilon \). Combining the result above and noticing \(G_1=H\), we obtain

$$\begin{aligned} \begin{aligned} d_{\mathcal {D}(M)}(F, T_{-c} \mathcal {K}^H_1 \bullet F)&\le d_{\mathcal {D}(M)}(F, T_{-\tilde{c}(1)} \mathcal {K}^H_1 \bullet F) + \varepsilon \\&= d_{\mathcal {D}(M)}(F, \mathcal {K}^{G_0}_1 \bullet F) + \varepsilon \\&\le B(H,f,A) +5\varepsilon . \end{aligned} \end{aligned}$$
(A.23)

Since \(\varepsilon >0\) is arbitrary, this completes the proof. \(\square \)

Remark A.4

Under the same assumption as in Theorem A.2, we can prove the weaker result

$$\begin{aligned} d_{\text {w-isom}}(F,T_{-c} \mathcal {K}^H_1 \bullet F) \le B(H,f,A) \end{aligned}$$
(A.24)

more straightforwardly, without the 2-parameter family, as follows. Here \(d_{\text {w{-}isom}}\) denotes the pseudo-distance on \(\mathcal {D}(M)\) defined by

$$\begin{aligned} d_{\text {w{-}isom}}(F,G) \,{:}{=}\,\inf \left\{ a+b \mathrel {}|\mathrel {}(F,G)~\text {is weakly}\, (a,b)\text {-isomorphic} \right\} . \end{aligned}$$
(A.25)

We set \(\mathcal {H}\,{:}{=}\,\mathcal {K}^H \bullet F \in \mathcal {D}(M \times I)\). Then we have \(\mathcal {H}|_{M \times {\mathbb {R}}_t \times \{0\}} \simeq F\) and \(\mathcal {H}|_{M \times {\mathbb {R}}_t \times \{1\}} \simeq \mathcal {K}^H_1 \bullet F\). Moreover, by the microsupport estimate, we find that

$$\begin{aligned} {{\,\mathrm{{{\text {SS}}}}\,}}(\mathcal {H}) \subset T^*M \times \left\{ (t,s;\tau ,\sigma ) \;\bigg |\; -\max _{p \in \phi ^H_s(A)} H_s(p) \cdot \tau \le \sigma \le -\min _{p \in \phi ^H_s(A)} H_s(p) \cdot \tau \right\} .\nonumber \\ \end{aligned}$$
(A.26)

Let \(\varepsilon >0\) and take a smooth function \(\tilde{f}:I\rightarrow {\mathbb {R}}\) such that \(\Vert \tilde{f}-f\Vert _{C^0} \le \varepsilon \). We define a function \(\tilde{c} :I \rightarrow {\mathbb {R}}\) by \(\tilde{c}(s) \,{:}{=}\,\int _0^s \tilde{f}(s')ds'\) and a function \(\varphi :M \times {\mathbb {R}}_t \times I \rightarrow M \times {\mathbb {R}}_t \times I\) by \(\varphi (x,t,s) \,{:}{=}\,(x,t-\tilde{c}(s),s)\). Then we have \(\varphi _* \mathcal {H}|_{M \times {\mathbb {R}}_t \times \{0\}} \simeq F\), \(\varphi _* \mathcal {H}|_{M \times {\mathbb {R}}_t \times \{1\}} \simeq T_{-\tilde{c}(1)}\mathcal {K}^H_1 \bullet F\), and

$$\begin{aligned} \begin{aligned}&{{\,\mathrm{{{\text {SS}}}}\,}}(\varphi _* \mathcal {H}) \\&\quad \subset {} T^*M \times \left\{ (t,s;\tau ,\sigma ) \;\bigg |\; - \left( \max _{p \in \phi ^H_s(A)} H_s(p) -\tilde{f}(s) \right) \cdot \tau \le \sigma \right. \\&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \left. \le - \left( \min _{p \in \phi ^H_s(A)} H_s(p) - \tilde{f}(s) \right) \cdot \tau \right\} . \end{aligned} \end{aligned}$$
(A.27)

Note that we may have \(\max _{p \in \phi ^H_s(A)} H_s(p) -\tilde{f}(s) < 0\) and \(\min _{p \in \phi ^H_s(A)} H_s(p) - \tilde{f}(s) >0\) in general. By applying Proposition 3.9, we obtain

$$\begin{aligned} \begin{aligned}&d_{\text {w{-}isom}}(F,T_{-\tilde{c}(1)}\mathcal {K}^H_1 \bullet F) \\&\quad = {} d_{\text {w{-}isom}}(\varphi _* \mathcal {H}|_{M \times {\mathbb {R}}_t \times \{0\}}, \varphi _* \mathcal {H}|_{M \times {\mathbb {R}}_t \times \{1\}}) \\&\quad \le {} \int _0^1 \left( \max \left\{ \max _{p \in \phi ^H_s(A)} \left( H_s(p) - \tilde{f}(s) \right) , 0 \right\} -\min \left\{ \min _{p \in \phi ^H_s(A)} \left( H_s(p) - \tilde{f}(s) \right) , 0\right\} \right) ds\\&\quad = {} \int _0^1 \left( \max \left\{ \max _{p \in \phi ^H_s(A)} H_s(p), \tilde{f}(s) \right\} -\min \left\{ \min _{p \in \phi ^H_s(A)} H_s(p), \tilde{f}(s) \right\} \right) ds \\&\quad \le {} \int _0^1 \left( \max \left\{ \max _{p \in \phi ^H_s(A)}H_s(p), f(s) \right\} -\min \left\{ \min _{p \in \phi ^H_s(A)}H_s(p), f(s)\right\} \right) ds + 2\varepsilon . \end{aligned} \end{aligned}$$
(A.28)

Hence, we have

$$\begin{aligned} \begin{aligned}&d_{\text {w{-}isom}}(F, T_{-c}\mathcal {K}^H_1 \bullet F) \le d_{\text {w{-}isom}}(F, T_{-\tilde{c}(1)} \mathcal {K}^H_1 \bullet F) + \varepsilon \\&\quad \le {} \int _0^1 \left( \max \left\{ \max _{p \in \phi ^H_s(A)}H_s(p), f(s) \right\} -\min \left\{ \min _{p \in \phi ^H_s(A)}H_s(p), f(s)\right\} \right) ds + 3\varepsilon , \end{aligned}\nonumber \\ \end{aligned}$$
(A.29)

which completes the proof.

For a timewise compactly supported function \(H :T^*M \times I \rightarrow {\mathbb {R}}\) and a non-empty closed subset A of \(T^*M\), we set

$$\begin{aligned} \Vert H\Vert _{\textrm{osc},A} \,{:}{=}\,\int _0^1 \left( \max _{p \in A} H_s(p) - \min _{p \in A} H_s(p) \right) ds. \end{aligned}$$
(A.30)

Proposition A.5

Let A be a non-empty closed subset of \(T^*M\) and \(F \in \mathcal {D}_A(M)\). Moreover, let \(H :T^*M \times I \rightarrow {\mathbb {R}}\) be a timewise compactly supported function. Then there exists \(c \in {\mathbb {R}}\) such that

$$\begin{aligned} d_{\mathcal {D}(M)}(F,T_{-c}\mathcal {K}^H_1 \bullet F) \le \Vert H\Vert _{\textrm{osc},A}. \end{aligned}$$
(A.31)

Proof

Using the technique in the proof of [45, Theorem 1.3], one can construct a function \(H'\) such that \(\phi ^H_1=\phi ^{H'}_1\) and

$$\begin{aligned} \begin{aligned}&\int _0^1 \left( \max _{p \in A}H_s(p) - \min _{p \in A}H_s(p) \right) ds \\&\quad ={} \int _0^1 \left( \max _{p \in \phi ^{H'}_s(A)}H'_s(p) - \min _{p \in \phi ^{H'}_s(A)}H'_s(p) \right) ds. \end{aligned} \end{aligned}$$
(A.32)

By Proposition 5.9, \(\phi ^H_1=\phi ^{H'}_1\) implies \(\mathcal {K}^H_1 \simeq \mathcal {K}^{H'}_1\). Hence, the result follows from Theorem A.2 (see also Remark A.3). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asano, T., Ike, Y. Completeness of derived interleaving distances and sheaf quantization of non-smooth objects. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02815-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02815-x

Mathematics Subject Classification

Navigation