Skip to main content
Log in

Gauss curvature flow with shrinking obstacle

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider a flow by powers of Gauss curvature under the obstruction that the flow cannot penetrate a prescribed region, so called an obstacle. For all dimensions and positive powers, we prove the optimal curvature bounds of solutions and all time existence with its long time behavior. We also prove the \(C^1\) regularity of free boundaries under a uniform thickness assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Almeida, L., Chambolle, A., Novaga, M.: Mean curvature flow with obstacles. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(5), 667–681 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, B.: Contraction of convex hypersurfaces by their affine normal. J. Differ. Geom. 43(2), 207–230 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138(1), 151–161 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrews, B.: Classification of limiting shapes for isotropic curve flows. J. Am. Math. Soc. 16(2), 443–459 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andrews, B., Guan, P., Ni, L.: Flow by powers of the Gauss curvature. Adv. Math. 299, 174–201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brendle, S., Choi, K., Daskalopoulos, P.: Asymptotic behavior of flows by powers of the Gaussian curvature. Acta Math. 219(1), 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.A.: The regularity of free boundaries in higher dimensions. Acta Math. 139(3–4), 155–184 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chopp, D., Evans, L.C., Ishii, H.: Waiting time effects for Gauss curvature flows. Indiana Univ. Math. J. 48(1), 311–334 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chow, B.: Deforming convex hypersurfaces by the \(n\)th root of the Gaussian curvature. J. Differ. Geom. 22(1), 117–138 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daskalopoulos, P., Hamilton, R.: The free boundary in the Gauss curvature flow with flat sides. J. Reine Angew. Math. 510, 187–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daskalopoulos, P., Lee, K.-A.: Worn stones with flat sides all time regularity of the interface. Invent. Math. 156(3), 445–493 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Figalli, A., Shahgholian, H.: A general class of free boundary problems for fully nonlinear elliptic equations. Arch. Ration. Mech. Anal. 213(1), 269–286 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Figalli, A., Shahgholian, H.: A general class of free boundary problems for fully nonlinear parabolic equations. Ann. Mat. Pura Appl. (4) 194(4), 1123–1134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Firey, W.J.: Shapes of worn stones. Mathematika 21, 1–11 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giga, Y., Tran, H.V., Zhang, L.: On obstacle problem for mean curvature flow with driving force. Geom. Flows 4(1), 9–29 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamilton, R.S.: Worn stones with flat sides. In A tribute to Ilya Bakelman. College Station, TX. vol. 3 of Discourses Math. Appl. Texas A & M University College Station, TX 1994, 69–78 (1993)

  17. Indrei, E., Minne, A.: Regularity of solutions to fully nonlinear elliptic and parabolic free boundary problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1259–1277 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, L., Lee, K.-A., Rhee, E.: \(\alpha \)-Gauss curvature flows with flat sides. J. Differ. Equ. 254(3), 1172–1192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, K.-A.: Obstacle Problems for the Fully Nonlinear Elliptic Operators. ProQuest LLC, Ann Arbor, MI, (1998). Thesis (Ph.D.)–New York University

  20. Lee, K.-A., Lee, T.: Gauss curvature flow with an obstacle. Calc. Var. Partial Differ. Equ. 60(5), Paper No. 166 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, K.-A., Lee, T., Park, J.: The obstacle problem for the Monge-Ampère equation with the lower obstacle. Nonlinear Anal. 210, 112374 (2021)

    Article  MATH  Google Scholar 

  22. Lee, K.-A., Lee, T., Park, J.: The obstacle problem for the Monge-Ampère equation. J. Differ. Equ. 309, 608–649 (2022)

    Article  MATH  Google Scholar 

  23. Lee, K.-A., Park, J.: The regularity theory for the parabolic double obstacle problem. Math. Ann. 381(1–2), 685–728 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, K.-A., Park, J., Shahgholian, H.: The regularity theory for the double obstacle problem. Calc. Var. Partial Differential Equations 58, 3, Paper No. 104, 19 (2019)

  25. Lee, K.-A., Shahgholian, H.: Regularity of a free boundary for viscosity solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 54(1), 43–56 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co. Inc., River Edge (1996)

    Book  MATH  Google Scholar 

  27. Mercier, G., Novaga, M.: Mean curvature flow with obstacles: existence, uniqueness and regularity of solutions. Interfaces Free Bound. 17(3), 399–426 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of Free Boundaries in Obstacle-Type Problems. Graduate Studies in Mathematics, vol. 136. American Mathematical Society, Providence (2012)

    Book  MATH  Google Scholar 

  29. Rupflin, M., Schnürer, O.C.: Weak solutions to mean curvature flow respecting obstacles. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 4, 1429–1467 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the referee for helpful comments. Ki-Ahm Lee was supported by NRF grant NRF-2020R1A2C1A01006256 funded by the Korean government (MSIP). Taehun Lee was supported by the NRF grant RS-2023-00211258 and KIAS Individual Grant MG079501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taehun Lee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KA., Lee, T. Gauss curvature flow with shrinking obstacle. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02739-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-023-02739-y

Mathematics Subject Classification

Navigation