Skip to main content

Advertisement

Log in

Parabolic mean value inequality and on-diagonal upper bound of the heat kernel on doubling spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove the diagonal upper bound of heat kernels for regular Dirichlet forms on metric measure spaces with volume doubling condition. As hypotheses, we use the Faber–Krahn inequality, the generalized capacity condition and an upper bound for the integrated tail of the jump kernel. The proof goes though a parabolic mean value inequality for subcaloric functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Andres, S., Barlow, M.T.: Energy inequalities for cutoff functions and some applications. J. Reine Angew. Math. 699, 183–215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barlow, M. T.: Diffusions on fractals, Lectures on probability theory and statistics (Saint-Flour, 1995), Lecture Notes in Math., vol. 1690, Springer, Berlin, pp. 1–121 (1998)

  3. Barlow, M.T., Bass, R.F.: Brownian motion and harmonic analysis on Sierpinski carpets. Can. J. Math. 51(4), 673–744 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361(4), 1963–1999 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpiński gasket. Probab. Theory Relat. Fields 79(4), 543–623 (1988)

    Article  MATH  Google Scholar 

  6. Bendikov, A., Grigor’yan, A., Eryan, H., Jiaxin, H.: Heat kernels and non-local Dirichlet forms on ultrametric spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22(1), 399–461 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Blumenthal, R.M., Getoor, R.K.: Some theorems on stable processes. Trans. Am. Math. Soc. 95, 263–273 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boutayeb, S., Coulhon, T., Sikora, A.: A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces. Adv. Math. 270, 302–374 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlen, E. A., Kusuoka, S., Stroock, D. W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Stat. 23(2), 245–287 (1987)

  10. Chen, Z.-Q., Kim, P., Kumagai, T., Wang, J.: Heat kernel upper bounds for symmetric Markov semigroups. J. Funct. Anal. 281(4), 109074 (2021)

  11. Chen, Z.-Q., Kumagai, T., Wang, J.: Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms. J. Eur. Math. Soc. (JEMS) 22(11), 3747–3803 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Z.-Q., Kumagai, T., Wang, J.: Stability of heat kernel estimates for symmetric non-local Dirichlet forms. Mem. Am. Math. Soc. 271(1330) (2021)

  13. Coulhon, T., Grigor’yan, A.: On-diagonal lower bounds for heat kernels and Markov chains. Duke Math. J. 89(1), 133–199 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes, De Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (2011)

    MATH  Google Scholar 

  15. Goldstein, S.: Random walks and diffusion on fractals, Percolation theory and ergodic theory of infinite particle systems (H. Kesten, ed.), vol. IMA Math. Appl. 8, Springer, New York, pp. 121–129 (1987)

  16. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182(1), 55–87 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Grigor’yan, A.: Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana 10(2), 395–452 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grigor’yan, A.: Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47. RI; International Press, Boston, MA, American Mathematical Society, Providence (2009)

  19. Grigor’yan, A., Eryan, H., Jiaxin, H.: Two-sided estimates of heat kernels of jump type Dirichlet forms. Adv. Math. 330, 433–515 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grigor’yan, A., Eryan, H., Jiaxin, H.: The pointwise existence and properties of heat kernel. Adv. Anal. Geom. 3, 27–70 (2021)

    MathSciNet  MATH  Google Scholar 

  21. Grigor’yan, A., Eryan, H., Jiaxin, H.: Mean value inequality and generalized capacity on doubling spaces. J. Pure Appl. Funct. Anal. (2022)

  22. Grigor’yan, A., Eryan, H., Hu, J. Off-diagonal lower estimates and Hölder regularity of the heat kernel, Preprint (2022)

  23. Grigor’yan, A., Hu, E., Hu, J.: Tail estimates of the heat semigroup and off-diagonal upper bounds of the heat kernel, Preprint (2022)

  24. Grigor’yan, A., Jiaxin, H.: Upper bounds of heat kernels on doubling spaces. Mosc. Math. J. 14(3), 505–563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grigor’yan, A., Hu, J., Lau, K.-S.: Heat kernels on metric spaces with doubling measure, Fractal geometry and stochastics IV. Progr. Probab. vol. 61, Birkhäuser Verlag, Basel, pp. 3–44 (2009)

  26. Grigor’yan, A., Jiaxin, H., Lau, K.-S.: Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric measure spaces. J. Math. Soc. Japan 67(4), 1485–1549 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Grigor’yan, A., Telcs, A.: Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40(3), 1212–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kigami, J.: Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  29. Kigami, J.: Local Nash inequality and inhomogeneity of heat kernels. Proc. Lond. Math. Soc. (3) 89(2), 525–544 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kusuoka, S.: A diffusion process on a fractal, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985). Academic Press, Boston, MA, pp. 251–274 (1987)

  31. Kusuoka, S., Zhou, X.Y.: Dirichlet forms on fractals: Poincaré constant and resistance. Probab. Theory Relat. Fields 93(2), 169–196 (1992)

    Article  MATH  Google Scholar 

  32. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  33. Nicholas, T.: Varopoulos, Hardy–Littlewood theory for semigroups. J. Funct. Anal. 63(2), 240–260 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This article was funded by the Deutsche Forschungsgemeinschaft (Project-ID 317210226) and National Natural Science Foundation of China (Nos. 12171354, 11801403, 11871296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxin Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AG was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Project-ID 317210226-SFB 1283, and by the Tsinghua Global Scholars Fellowship Program. EH was supported by National Key R &D Program of China (No. 2022YFA1000033) and the National Natural Science Foundation of China (No. 12171354, and No. 11801403). JH was supported by the National Natural Science Foundation of China (No. 12271282) and SFB 1283.

Appendix

Appendix

In this appendix, we collect some facts that have been used in this paper.

Proposition 8.1

([21, Proposition 15.1 in Appendix]) Let \(({\mathcal {E}},{\mathcal {F}})\) be a regular Dirichlet form in \(L^{2}\). Then the following statements are true.

  1. (i)

    If \(u\in {\mathcal {F}}^{\prime }\) and \(F:{\mathbb {R}}\mapsto \mathbb {R}\) is a Lipschitz function, then \(F(u)\in {\mathcal {F}}^{\prime }\).

  2. (ii)

    If \(u\in {\mathcal {F}}^{\prime }\cap L^{\infty }\) and \(v\in {\mathcal {F}}\cap L^{\infty }\) then \(uv\in {\mathcal {F}}\cap L^{\infty }\)

  3. (iii)

    Let \(\Omega \) be an open subset of M. If \(u\in {\mathcal {F}}^{\prime }\cap L^{\infty }\) and \(v\in {\mathcal {F}}(\Omega )\cap L^{\infty }\), then \(uv\in {\mathcal {F}}(\Omega )\).

The following properties on weak differentiation of a function u were proved in [25, Lemma 5.1].

Proposition 8.2

Assume that both functions \(u:I\rightarrow L^2\) and \( v:I\rightarrow L^2\) are weakly differentiable at t. Then we have the following.

  1. (i)

    (Product rule) The inner product (uv) is also differentiable at t, and

    $$\begin{aligned} (u,v)^{\prime }= (u^{\prime },v) + (u,v^{\prime }). \end{aligned}$$
  2. (ii)

    (Chain rule) Let \(\Phi \) be a smooth real-valued function on \({\mathbb {R}}\) such that

    $$\begin{aligned} \Phi (0) = 0,\quad \sup _{{\mathbb {R}}}|\Phi ^{\prime }|<\infty ,\quad \sup _{ {\mathbb {R}}}|\Phi ^{\prime \prime }|<\infty . \end{aligned}$$

    Then \(\Phi (u)\) is also weakly differentiable at t, and

    $$\begin{aligned} \Phi (u)^{\prime }= \Phi ^{\prime }(u)u^{\prime }. \end{aligned}$$
    (8.1)

Proposition 8.3

([21, Proposition 15.4 in Appendix]) Let \(\{a_k\}_{k=0}^{\infty }\) be a sequence of non-negative numbers such that

$$\begin{aligned} a_k \le D\lambda ^ka_{k-1}^{1+\nu }\ \text { for }k=1,2,\cdots \end{aligned}$$

for some constants \(D,\nu >0\) and \(\lambda \ge 1\). Then for any \(k\ge 0\),

$$\begin{aligned} a_k \le D^{-\frac{1}{\nu }}\Big (D^{\frac{1}{\nu }}\lambda ^{\frac{1+\nu }{\nu ^2} }a_0\Big )^{(1+\nu )^k}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’yan, A., Hu, E. & Hu, J. Parabolic mean value inequality and on-diagonal upper bound of the heat kernel on doubling spaces. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02699-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-023-02699-3

Mathematics Subject Classification

Navigation