Skip to main content
Log in

Convexity of complements of limit sets for holomorphic foliations on surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \({\mathcal {F}}\) be a holomorphic foliation on a compact Kähler surface with hyperbolic singularities and no foliation cycle. We prove that if the limit set of \({\mathcal {F}}\) has zero Lebesgue measure, then its complement is a modification of a Stein domain. This applies for the case of suspensions of Kleinian representations, answering a question asked by Brunella. The proof consists in building, in several steps, a metric of positive curvature for the normal bundle of \({\mathcal {F}}\) near the limit set. Then we construct a proper strictly plurisubharmonic exhaustion function for the complement of the limit set by extending Brunella’s method to our singular context. The arguments hold more generally when the limit set is thin, a property relying on Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

Our manuscript has no associated data.

References

  1. Agol, I.: Tameness of hyperbolic 3-manifolds. arXiv:math/0405568

  2. Ahlfors, L.V.: Fundamental polyhedrons and limit point sets of Kleinian groups. Proc. Natl. Acad. Sci. U.S.A. 55(2), 251–254 (1966)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alvarez, A.: Dynamique et topologie des feuilletages algébriques du plan projectif complexe. Mémoire d’habilitation à diriger des recherches (2019)

  4. Avila, A., Lyubich, M.: Lebesgue measure of Feigenbaum Julia sets. Ann. Math. 195, 1–88 (2022)

    Article  MathSciNet  Google Scholar 

  5. Berndtsson, B., Sibony, N.: The \(\overline{\partial }\)-equation on a positive current. Invent. Math. 147, 371–428 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Pure and Applied Mathematics, vol. 29, p. x+313. Academic Press, New York (1968)

    Google Scholar 

  7. Brunella, M.: On the dynamics of codimension one holomorphic foliations with ample normal bundle. Indiana Math. J. 57(7) (2008)

  8. Brunella, M.: Codimension one foliations on complex tori. Annales Faculté des Sciences de Toulouse, Tome XIX 2, 405–418 (2010)

    Article  MathSciNet  Google Scholar 

  9. Buff, X., Chéritat, A.: Quadratic Julia sets with positive area. Ann. Math. (2) 176(2), 673–746 (2012)

    Article  MathSciNet  Google Scholar 

  10. Calegari, D., Gabai, D.: Shrinkwrapping and the taming of hyperbolic 3-manifolds. J. Am. Math. Soc. 19(2), 385–446 (2006)

    Article  MathSciNet  Google Scholar 

  11. Canales González, C.: Levi-flat hypersurfaces and their complement in complex surfaces. Ann. Inst. Fourier 67(6), 2323–2462 (2017)

    Article  MathSciNet  Google Scholar 

  12. Canary, R.: Ends of hyperbolic 3-manifolds. J. Am. Math. Soc. 6(1), 1–35 (1993)

    Article  MathSciNet  Google Scholar 

  13. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, London (1984)

    Google Scholar 

  14. Deroin, B., Kleptsyn, V.: Random conformal dynamical systems. Geom. Funct. Anal. 17(4), 1043–1105 (2007)

    Article  MathSciNet  Google Scholar 

  15. Diederich, K., Ohsawa, T.: Harmonic mappings and disc bundles over compact Kähler manifolds. Publ. Res. Inst. Math. Sci. 21(4), 819–833 (1985)

    Article  MathSciNet  Google Scholar 

  16. Diederich, K., Ohsawa, T.: On the displacement rigidity of Levi flat hypersurfaces-the case of boundaries of disc bundles over compact Riemann surfaces. Publ. Res. Inst. Math. Sci. 43(1), 171–180 (2007)

    Article  MathSciNet  Google Scholar 

  17. Dinh, T.-C., Nguyen, V.-A., Sibony, N.: Unique ergodicity for foliations on compact Kähler surfaces. Duke Math. J. 171(13), 2627–2698 (2022)

    MathSciNet  Google Scholar 

  18. Fornaess, J.E., Sibony, N.: Unique ergodicity of harmonic currents on singular foliations of \({\mathbb{P} }^2\). Geom. Funct. Anal. 19(5), 1334–1377 (2010)

    Article  MathSciNet  Google Scholar 

  19. Ghys, É.: Laminations par surfaces de Riemann. Dynamique et géométrie complexes (Lyon, 1997), ix, xi, pp. 49–95, Panor. Synthèses, 8, SMF Paris (1999)

  20. Grauert, H.: On Levi’s problem and the imbedding of real-analytic manifolds. Ann. Math. 2(68), 460–472 (1958)

    Article  MathSciNet  Google Scholar 

  21. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North-Holland Mathematical Library, Amsterdam (1967)

    Google Scholar 

  22. Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations, Graduate Studies in Mathematics. American Mathematical Society, Providence (2007)

    Google Scholar 

  23. Lins Neto, A.: A note on projective Levi flats and minimal sets of algebraic foliations. Ann. Inst. Fourier 49(4), 1369–1385 (1999)

    Article  MathSciNet  Google Scholar 

  24. Milnor, J.: Dynamics in One Complex Variable, Annals of Mathematics Studies. Princeton University Press, Princeton (2006). arXiv:math/9201272

    Google Scholar 

  25. Mörters, P., Peres, Y.: Brownian motion. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 30 (2010)

  26. Nguyen, V.-A.: Directed harmonic currents near hyperbolic singularities. Ergod. Theory Dyn. Syst. 38(8), 3170–3187 (2018)

    Article  MathSciNet  Google Scholar 

  27. Nguyen, V.-A.: Singular holomorphic foliations by curves II: negative Lyapunov exponent. arXiv:math/1812.10125v2

  28. Peternell, T.: Pseudoconvexity, the Levi problem and vanishing theorems. Several complex variables VII. Encycl. Math. Sci. 74, 221–257 (1994)

    Google Scholar 

  29. Port, S., Stone, C.: Brownian Motion and Classical Potential Theory. Probability and Mathematical Statistics. Academic Press, New York (1978)

    Google Scholar 

  30. Skoda, H.: Prolongement des courants, positifs, fermés de masse finie. Invent. Math. 66(3), 361–376 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  31. Sullivan, D.: Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math. 36, 225–255 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  32. Sullivan, D.: Related aspects of positivity in Riemannian geometry. J. Differ. Geom. 25(3), 327–351 (1987)

    Article  MathSciNet  Google Scholar 

  33. Takeuchi, A.: Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif. J. Math. Soc. Jpn. 16, 159–181 (1964)

    Google Scholar 

Download references

Acknowledgements

We thank Alano Ancona for pointing the Ref. [6] on the thin property and Misha Lyubich for discussions about that property for Julia sets. We also thank the Research in Paris program of Institut Henri Poincaré for the very nice working conditions offered to us during fall 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Dupont.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deroin, B., Dupont, C. & Kleptsyn, V. Convexity of complements of limit sets for holomorphic foliations on surfaces. Math. Ann. 388, 2727–2753 (2024). https://doi.org/10.1007/s00208-023-02590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-023-02590-1

Mathematics Subject Classification

Navigation