Skip to main content
Log in

On the space of riemannian metrics satisfying surgery stable curvature conditions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We utilize a condition for algebraic curvature operators called surgery stability as suggested by the work of Hoelzel to investigate the space of riemannian metrics over closed manifolds satisfying these conditions. Our main result is a parametrized Gromov–Lawson construction with not necessarily trivial normal bundles and shows that the homotopy type of this space of metrics is invariant under surgeries of a suitable codimension. This is a generalization of a well-known theorem by Chernysh and Walsh for metrics of positive scalar curvature. As an application of our method, we show that the space of metrics of positive scalar curvature on quaternionic projective spaces are homotopy equivalent to that on spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Notes

  1. Precisely as in the scalar curvature case, note that \({\mathcal {R}}^{{{\,\textrm{torp}\,}}}_C(M_0)\) and \({\mathcal {R}}^{{{\,\textrm{torp}\,}}}_C(M_1)\) are homeomorphic and thus Theorem A yields a chain of weak homotopy equivalences. It can be strengthened to a homotopy equivalence using Whitehead’s theorem because the space of metrics satisfying C (an open condition) is an open subset of the space of metrics, which was shown by Palais [25, Theorem 14] to be dominated by CW-complexes.

  2. e.g. [4, Proposition 3.4].

  3. This condition is sometimes also called positive Einstein or the metric is said to have positive Einstein tensor. We will refrain from these terms to avoid confusion with Einstein metrics with positive Einstein constant.

  4. As common notation suggests, we will write relations such as \(\sec (R) < \alpha \) to mean “\(\sec (R, E) < \alpha \) for every plane \(E < {\mathbb {E}}^n\)”.

  5. Smoothing here means to convolute with a Dirac delta centered at \(\frac{\delta \pi }{2}\) to make sure the derivatives of even order in the definition of \(\beta _\delta \) agree on both sides at \(\frac{\delta \pi }{2}\).

  6. While there have been similar ideas prior to the work of Chernysh (e.g. [5, 12]), the formalism as seen in the following is essentially laid out in [6].

  7. Note that in general this cannot be done in a continuous way if \(\nu N\) is not assumed to be trivial.

References

  1. Anderson, D.W., Brown, E.H., Jr., Peterson, F.P.: The structure of the Spin cobordism ring. Ann. Math. 2(86), 271–298 (1967). https://doi.org/10.2307/1970690

    Article  MathSciNet  Google Scholar 

  2. Besse, A.L.: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 10. Springer, Berlin (1987). https://doi.org/10.1007/978-3-540-74311-8

  3. Botvinnik, B., Ebert, J., Randal-Williams, O.: Infinite loop spaces and positive scalar curvature. Invent. Math. 209(3), 749–835 (2017). https://doi.org/10.1007/s00222-017-0719-3

    Article  ADS  MathSciNet  Google Scholar 

  4. Botvinnik, B., Labbi, M.: Highly connected manifolds of positive \(p\)-curvature. Trans. Am. Math. Soc. 366(7), 3405–3424 (2014). https://doi.org/10.1090/S0002-9947-2014-05939-4

    Article  MathSciNet  Google Scholar 

  5. Carr, R.: Construction of manifolds of positive scalar curvature. Trans. Am. Math. Soc. 307(1), 63–74 (1988)

    Article  MathSciNet  Google Scholar 

  6. Chernysh, V.: On the homotopy type of the space \({\cal{R}}^{+}({M})\) (2004). Preprint. arXiv:math/0405235 [math.GT]

  7. Crowley, D., Nordström, J.: The classification of 2-connected 7-manifolds. Proc. Lond. Math. Soc. (3) 119(1), 1–54 (2019). https://doi.org/10.1112/plms.12222

    Article  MathSciNet  Google Scholar 

  8. Crowley, D., Schick, T.: The Gromoll filtration, \(KO\)-characteristic classes and metrics of positive scalar curvature. Geom. Topol. 17(3), 1773–1789 (2013). https://doi.org/10.2140/gt.2013.17.1773

    Article  MathSciNet  Google Scholar 

  9. Crowley, D., Schick, T., Steimle, W.: Harmonic spinors and metrics of positive curvature via the Gromoll filtration and Toda brackets. J. Topol. 11(4), 1077–1099 (2018). https://doi.org/10.1112/topo.12081

    Article  MathSciNet  Google Scholar 

  10. Ebert, J., Frenck, G.: The Gromov–Lawson–Chernysh surgery theorem. Bol. Soc. Mat. Mex. (3) 27(2), Paper No. 37, 43 (2021). https://doi.org/10.1007/s40590-021-00310-w

  11. Ebert, J., Wiemeler, M.: On the homotopy type of the space of metrics of positive scalar curvature (2020). https://doi.org/10.48550/ARXIV.2012.00432. arXiv:2012.00432

  12. Gajer, P.: Riemannian metrics of positive scalar curvature on compact manifolds with boundary. Ann. Global Anal. Geom. 5(3), 179–191 (1987). https://doi.org/10.1007/BF00128019

    Article  MathSciNet  Google Scholar 

  13. Gromov, M.: Sign and geometric meaning of curvature. Rend. Sem. Mat. Fis. Milano 61, 9–123 (1991)

  14. Gromov, M., Lawson, H.B., Jr.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. (2) 111(3), 423–434 (1980). https://doi.org/10.2307/1971103

    Article  MathSciNet  Google Scholar 

  15. Gromoll, D., Walschap, G.: Metric foliations and curvature, Progress in Mathematics, vol. 268. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  16. Grove, K., Ziller, W.: Curvature and symmetry of Milnor spheres. Ann. Math. (2) 152(1), 331–367 (2000)

    Article  MathSciNet  Google Scholar 

  17. Hanke, B., Schick, T., Steimle, W.: The space of metrics of positive scalar curvature. Publ. Math. Inst. Hautes Études Sci. 120, 335–367 (2014). https://doi.org/10.1007/s10240-014-0062-9

    Article  MathSciNet  Google Scholar 

  18. Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974). https://doi.org/10.1016/0001-8708(74)90021-8

    Article  MathSciNet  Google Scholar 

  19. Hoelzel, S.: Surgery stable curvature conditions. Math. Ann. 365(1–2), 13–47 (2016). https://doi.org/10.1007/s00208-015-1265-1

    Article  MathSciNet  Google Scholar 

  20. Labbi, M.L.: Variétés riemanniennes à p-courbure positive. Ph.D. thesis, Université Montpellier II (1995)

  21. Labbi, M.L.: Actions des groupes de Lie presque simples et positivité de la \(p\)-courbure. Ann. Fac. Sci. Toulouse Math. (6) 6(2), 263–276 (1997)

    Article  MathSciNet  Google Scholar 

  22. Labbi, M.L.: Stability of the \(p\)-curvature positivity under surgeries and manifolds with positive Einstein tensor. Ann. Global Anal. Geom. 15(4), 299–312 (1997). https://doi.org/10.1023/A:1006553611999

    Article  MathSciNet  Google Scholar 

  23. Labbi, M.L.: Courbure riemannienne: variations sur différentes notions de positivité. Habilitation thesis, Université Montpellier II (2006)

  24. Lawson, H.B., Jr., Michelsohn, M.L.: Spin geometry, Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

    Google Scholar 

  25. Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1–16 (1966). https://doi.org/10.1016/0040-9383(66)90002-4

    Article  MathSciNet  Google Scholar 

  26. Petersen, P.: Riemannian geometry, Graduate Texts in Mathematics, vol. 171, third edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26654-1

  27. Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28(1–3), 159–183 (1979). https://doi.org/10.1007/BF01647970

    Article  MathSciNet  Google Scholar 

  28. Tuschmann, W., Wraith, D.J.: Moduli spaces of Riemannian metrics, Oberwolfach Seminars, vol. 46. Birkhäuser Verlag, Basel (2015). https://doi.org/10.1007/978-3-0348-0948-1. Second corrected printing

  29. Walsh, M.: Metrics of positive scalar curvature and generalised Morse functions. Part I. Mem. Am. Math. Soc. 209(983), xviii+80 (2011). https://doi.org/10.1090/S0065-9266-10-00622-8

    Article  MathSciNet  Google Scholar 

  30. Walsh, M.: Cobordism invariance of the homotopy type of the space of positive scalar curvature metrics. Proc. Am. Math. Soc. 141(7), 2475–2484 (2013). https://doi.org/10.1090/S0002-9939-2013-11647-3

    Article  MathSciNet  Google Scholar 

  31. Wolfson, J.: Manifolds with \(k\)-positive Ricci curvature. In: Variational problems in differential geometry, London Math. Soc. Lecture Note Ser., vol. 394, pp. 182–201. Cambridge Univ. Press, Cambridge (2012)

  32. Wraith, D.J.: On the moduli space of positive Ricci curvature metrics on homotopy spheres. Geom. Topol. 15(4), 1983–2015 (2011). https://doi.org/10.2140/gt.2011.15.1983

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to Prof. W. Tuschmann for his constant support during the preparation of this work, which is based on results of the author’s Ph.D. thesis. Moreover, the author extends thanks to Prof. J. Ebert, Dr. M. Wiemeler and Dr. G. Frenck for helpful discussions on the subject, as well as to the anonymous referee for considerate comments. In particular, I would like to thank Dr. M. Wiemeler for his suggestion to study Chernysh’s construction with non-trivial normal bundles.

Funding

The author was supported by the SNSF (Swiss National Science Foundation) Project 200021E-172469 [as an SNF Postdoc September 2019 – August 2020] and the DFG (Deutsche Forschungsgemeinschaft) Priority programme Geometry at infinity (SPP 2026) [as an associated member February 2019–August 2019]. The author acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 281869850 (RTG 2229) [as an associated member October 2016 – August 2019].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Bernhard Kordaß.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the SNSF-Project 200021E-172469 and the DFG-Priority programme Geometry at infinity (SPP 2026). The author acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 281869850 (RTG 2229).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordaß, JB. On the space of riemannian metrics satisfying surgery stable curvature conditions. Math. Ann. 388, 1841–1878 (2024). https://doi.org/10.1007/s00208-023-02563-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-023-02563-4

Mathematics Subject Classification

Navigation