Skip to main content
Log in

Gamma conjecture II for quadrics

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The Gamma conjecture II for the quantum cohomology of a Fano manifold F, proposed by Galkin, Golyshev and Iritani, describes the asymptotic behavior of the flat sections of the Dubrovin connection near the irregular singularities, in terms of a full exceptional collection, if there exists, of \({\mathcal {D}}^b(F)\) and the \({\widehat{\Gamma }}\)-integral structure. In this paper, for the smooth quadric hypersurfaces we prove the convergence of the full quantum cohomology and Gamma II. For the proof, we first give a criterion on Gamma II for Fano manifolds with semisimple quantum cohomology, by Dubrovin’s theorem of analytic continuations of semisimple Frobenius manifolds. Then we work out a closed formula of the Chern characters of spinor bundles on quadrics. By the deformation-invariance of Gromov–Witten invariants we show that the full quantum cohomology can be reconstructed by its ambient part, and use this to obtain estimations. Finally we complete the proof of Gamma II for quadrics by explicit asymptotic expansions of flat sections corresponding to Kapranov’s exceptional collections and an application of our criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bayer, A.: Semisimple quantum cohomology and blowups. Int. Math. Res. Not. 40, 2069–2083 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beauville, A.: Quantum cohomology of complete intersections. Mat. Fiz. Anal. Geom. 2(3–4), 384–398 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Cotti, G.: Cyclic stratum of Frobenius manifolds, Borel–Laplace \((\alpha ,\beta )\)-multitransforms, and integral representations of solutions of quantum differential equations. arXiv:2005.08262

  4. Cotti, G.: Degenerate Riemann–Hilbert–Birkhoff problems, semisimplicity, and convergence of WDVV-potentials. Lett. Math. Phys. 111, 99 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cotti, G., Dubrovin, B., Guzzetti, D.: Helix structures in quantum cohomology of Fano varieties. arXiv:1811.09235 [math.AG]

  6. Cox, D.A., Katz, S.: Mirror symmetry and algebraic geometry. In: Mathematical Surveys and Monographs, vol. 68. American Mathematical Society, Providence (1999)

  7. Deligne, P.: Le théoreme de Noether. In: Groupes de Monodromie en Géométrie Algébrique, pp. 328–340. Springer, Berlin

  8. Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993), pp. 120–348, Lecture Notes in Mathematics, 1620, Fond. CIME/CIME Found. Subser., Springer, Berlin (1996)

  9. Dubrovin, B.: Geometry and analytic theory of Frobenius manifolds. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. 1998, Extra Vol. II, pp. 315–326

  10. Dubrovin, B.: Painlevé transcendents in two-dimensional topological field theory. In: The Painlevé Property, pp. 287–412, CRM Ser. Math. Phys., Springer, New York (1999)

  11. Dubrovin, B.: Quantum cohomology and isomonodromic deformation, Lecture at “Recent Progress in the Theory of Painlevé Equations: Algebraic, Asymptotic and Topological Aspects", Strasbourg(2013)

  12. Fang, B., Zhou, P.: Gamma II for toric varieties from integrals on T-dual branes and homological mirror symmetry. arXiv:1903.05300

  13. Fritzsche, K.: Linear-uniforme Bündel auf Quadriken. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10(2), 313–339 (1983)

  14. Galkin, S., Golyshev, V., Iritani, H.: Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures. Duke Math. J. 165(11), 2005–2077 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galkin, S., Iritani, H.: Gamma conjecture via mirror symmetry. In: Primitive Forms and Related Subjects-Kavli IPMU 2014, vol. 83, pp. 55–115, Adv. Stud. Pure Math.,Math. Soc. Japan (2019)

  16. Givental, A.B.: Equivariant Gromov–Witten invariants. Int. Math. Res. Not. 13, 613–663 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Givental, A.B.: Symplectic geometry of Frobenius structures. In: Frobenius Manifolds, Aspects Math., E36, pp. 91–112. Friedr. Vieweg, Wiesbaden (2004)

  18. Hertling, C., Manin, Yu. I., Teleman, C.: An update on semisimple quantum cohomology and F-manifolds. Tr. Mat. Inst. Steklova, vol. 264, pp. 69–76. Mnogomernaya Algebraicheskaya Geometriya (2009)

  19. Hosono, S., Klemm, A., Theisen, S., Yau, S.-T.: Mirror symmetry, mirror map and applications to complete intersection Calabi–Yau spaces. Nucl. Phys. B 433(3), 501–552 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, X.: Big quantum cohomology of Fano complete intersections. arXiv:1501.03683 (2015)

  21. Hu, X.: Big quantum cohomology of even dimensional intersections of two quadrics. arXiv:2109.11469 (2021)

  22. Iritani, H.: Convergence of quantum cohomology by quantum Lefschetz. J. Reine Angew. Math. 610, 29–69 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Iritani, H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222(3), 1016–1079 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kapranov, M.M.: On the derived categories of coherent sheaves on some homogeneous spaces. Invent. Math. 92(3), 479–508 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Katzarkov, L.; Kontsevich, M.; Pantev, T. Hodge theoretic aspects of mirror symmetry. In: From Hodge Theory to Integrability and TQFT tt*-Geometry, Proceedings of Symposia in Pure Mathematics, vol. 78, pp. 87–174. American Mathematical Society, Providence (2008)

  26. Ke, H.-Z.: On Conjecture \({\cal{O}}\) for projective complete intersections, arXiv:1809.10869 [math.AG]

  27. Kollár, János; Mori, Shigefumi. Birational geometry of algebraic varieties. With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)

  28. Li, J., Tian, G.: Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties. J. Am. Math. Soc. 11(1), 119–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Libgober, A.: Chern classes and the periods of mirrors. Math. Res. Lett. 6(2), 141–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Luke, Y.L.: The special functions and their approximations, Vol. I. Mathematics in Science and Engineering, vol. 53. Academic Press, New York (1969)

  31. Lee, Y.-P., Pandharipande, R.: A reconstruction theorem in quantum cohomology and quantum K-theory. Am. J. Math. 126(6), 1367–1379 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Malgrange, B.: Sur les déformations isomonodromiques. I, II. Mathematics and physics (Paris, 1979/1982), 401–438, Progress in Mathematics, vol. 37, Birkhäuser Boston, Boston, MA (1983)

  33. Manin, Y.I.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces. American Mathematical Society Colloquium Publications, vol. 47. American Mathematical Society, Providence (1999)

  34. Miwa, T.: Painlevé property of monodromy preserving deformation equations and the analyticity of \(\tau \) functions. Publ. Res. Inst. Math. Sci. 17(2), 703–721 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ottaviani, G.: Spinor bundles on quadrics. Trans. Am. Math. Soc. 307(1), 301–316 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zinger, A.: The genus 0 Gromov–Witten invariants of projective complete intersections. Geom. Topol. 18(2), 1035–1114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both authors are grateful to Jianxun Hu for his encouragement and support, and would like to thank Giordano Cotti and Sergey Galkin for their comments. The authors also thank Weiqiang He for pointing out typos in an early version of this paper. Ke would like to thank Xingbang Hao, Changzheng Li for helpful discussions, and especially Di Yang for sharing his knowledge on Frobenius manifolds. We are also grateful to the referee for many helpful suggestions. The authors are partially supported by NSFC (No. 11831017), and Ke is also supported by NSFC (Nos. 11890662, 11771461, 11521101, 11601534), and Hu by NSFC (No. 11701579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Zhong Ke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Ke, HZ. Gamma conjecture II for quadrics. Math. Ann. 387, 927–983 (2023). https://doi.org/10.1007/s00208-022-02477-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02477-7

Mathematics Subject Classification

Navigation