Skip to main content
Log in

Energy distribution of solutions to defocusing semi-linear wave equation in two dimensional space

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider finite-energy solutions to the defocusing nonlinear wave equation in two dimensional space. We prove that almost all energy moves to the infinity at almost the light speed as time tends to infinity. In addition, the inward/outward part of energy gradually vanishes as time tends to positive/negative infinity. These behaviours resemble those of free waves. We also prove some decay estimates of the solutions if the initial data decay at a certain rate as the spatial variable tends to infinity. As an application, we prove a couple of scattering results for solutions whose initial data are in a weighted energy space. Our assumption on decay rate of initial data is weaker than previous known scattering results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing is not applicable to this article as this article is a theoretical discussion of the problem. No new data were created or analyzed in this article.

References

  1. Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear equations. Am. J. Math. 121, 131–175 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Bahouri, H., Shatach, J.: Decay estimates for the critical semilinear wave equation. Anna. l’Inst. Henri Poincaré Anal. Non Linéaire 15, 783–789 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Bulut, A.: Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation. J. Funct. Anal. 263, 1609–1660 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Christ, M., Weinstein, M.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global existence and scattering for rough solutions to a nonlinear Schrödinger equation in \({\mathbb{R} }^3\). Commun. Pure Appl. Math. 57, 987–1014 (2004)

    MATH  Google Scholar 

  6. Dodson, B., Lawrie, A.: Scattering for the radial 3d cubic wave equation. Anal. PDE 8, 467–497 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Dodson, B., Lawrie, A., Mendelson, D., Murphy, J.: Scattering for defocusing energy subcritical nonlinear wave equations. Anal. PDE 13, 1995–2090 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Duyckaerts, T., Kenig, C.E., Merle, F.: Scattering for radial, bounded solutions of focusing supercritical wave equations. Int. Math. Res. Not. 20, 224–258 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Duyckaerts, T., Kenig, C.E., Merle, F.: Scattering profile for global solutions of the energy-critical wave equation. J. Eur. Math. Soc. 21, 2117–2162 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Friedlander, F.G.: On the radiation field of pulse solutions of the wave equation. Proc. R. Soc. Ser. A 269, 53–65 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Friedlander, F.G.: Radiation fields and hyperbolic scattering theory. Math. Proc. Camb. Philos. Soc. 88, 483–515 (1980)

    MathSciNet  MATH  Google Scholar 

  12. Ginibre, J., Soffer, A., Velo, G.: The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal. 110, 96–130 (1992)

    MathSciNet  MATH  Google Scholar 

  13. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Klein–Gordon equation. Math. Z. 189(4), 487–505 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Ginibre, J., Velo, G.: Conformal invariance and time decay for nonlinear wave equations’’. Ann. l’inst. Henri Poincaré (A) Phys. Théorique 47, 221–276 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Ginibre, J., Velo, G.: Generalized Strichartz inequality for the wave equation. J. Funct. Anal. 133, 50–68 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Glassey, R., Pecher, H.: Time decay for nonlinear wave equations in two space dimensions. Manuscr. Math. 38, 387–400 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Grillakis, M.: Regularity and asymptotic behaviour of the wave equation with critical nonlinearity. Ann. Math. 132, 485–509 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Grillakis, M.: Regularity for the wave equation with a critical nonlinearity. Commun. Pure Appl. Math. 45, 749–774 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Hidano, K.: Conformal conservation law, time decay and scattering for nonlinear wave equation. J. Anal. Math. 91, 269–295 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Kapitanski, L.: Global and unique weak solutions of nonlinear wave equations. Math. Res. Lett. 1, 211–223 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Kapitanski, L.: Weak and yet weaker solutions of semilinear wave equations. Commun. Partial Differ. Equ. 19, 1629–1676 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Kenig, C.E., Merle, F.: Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications. Am. J. Math. 133(4), 1029–1065 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Killip, R., Visan, M.: The defocusing energy-supercritical nonlinear wave equation in three space dimensions. Trans. Am. Math. Soc. 363, 3893–3934 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Killip, R., Visan, M.: The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions. Proc. Am. Math. Soc. 139, 1805–1817 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Lin, J., Strauss, W.: Decay and scattering of solutions of a nonlinear Schrödinger equation. J. Funct. Anal. 30, 245–263 (1978)

    MATH  Google Scholar 

  26. Lindblad, H., Sogge, C.: On existence and scattering with minimal regularity for semi-linear wave equations. J. Funct. Anal. 130, 357–426 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Lindblad, H., Tao, T.: Asymptotic decay for a one-dimensional nonlinear wave equation. Anal. PDE 5, 411–422 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Morawetz, C.S.: Time decay for the nonlinear Klein–Gordon equations. Proc. R. Soc. Lond. Ser. A 306, 291–296 (1968)

    MathSciNet  MATH  Google Scholar 

  29. Nakanishi, K.: Unique global existence and asymptotic behaviour of solutions for wave equations with non-coercive critical nonlinearity. Commun. Partial Differ. Equ. 24, 185–221 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Nakanishi, K.: Scattering theory for nonlinear Klein–Gordon equations with Sobolev critical power. Int. Math. Res. Not. 1, 31–60 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Nakanishi, K.: Energy scattering for nonlinear Klein–Gordon and Schrödinger equations in spatial dimensions 1 and 2. J. Funct. Anal. 169, 201–225 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Perthame, B., Vega, L.: Morrey–Campanato estimates for Helmholtz equations. J. Funct. Anal. 164, 340–355 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Pecher, H.: Nonlinear small data scattering for the wave and Klein–Gordon equation. Math. Z. 185, 261–270 (1984)

    MathSciNet  MATH  Google Scholar 

  34. Rodriguez, C.: Scattering for radial energy-subcritical wave equations in dimensions 4 and 5. Commun. Partial Differ. Equ. 42, 852–894 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Shatah, J., Struwe, M.: Well-posedness in the energy space for semilinear wave equations with critical growth. Int. Math. Res. Not. 7, 303–309 (1994)

    MathSciNet  MATH  Google Scholar 

  36. Shen, R.: On the energy subcritical, nonlinear wave equation in \({\mathbb{R} }^3\) with radial data. Anal. PDE 6, 1929–1987 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Shen, R., Staffilani, G.: A semi-linear shifted wave equation on the hyperbolic spaces with application on a quintic wave equation on \({\mathbb{R} }^2\). Trans. Am. Math. Soc. 368, 2809–2864 (2016)

    MATH  Google Scholar 

  38. Shen, R.: Energy distribution of radial solutions to energy subcritical wave equation with an application on scattering theory. Trans. Am. Math. Soc. 374, 3827–3857 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Shen, R.: Inward/outward energy theory of non-radial solutions to 3D semi-linear wave equation. Adv. Math. 374, 107384 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Taylor, M.: Tools for PDE. Pseudo Differential Operators, Paradifferential Operators and Layer Potentials. Mathematical Surveys and Monographs, vol. 81. AMS, Providence (2000)

    Google Scholar 

  41. Struwe, M.: Globally regular solutions to the \(u^5\) Klein–Gordon equation. Ann. Scuola Norm. Super. Pisa Classe Sci. 15, 495–513 (1988)

    MATH  Google Scholar 

  42. Tataru, D.: Strichartz estimates in the hyperbolic space and global existence for the similinear wave equation. Trans. Am. Math. Soc. 353, 795–807 (2000)

    MATH  Google Scholar 

  43. Tsutaya, K.: Scattering theory for semilinear wave equations with small data in two space dimensions. Trans. Am. Math. Soc. 342(2), 595–618 (1994)

    MathSciNet  MATH  Google Scholar 

  44. Wei, D., Yang, S.: On the global behaviours for defocusing semilinear wave equation in \({\mathbb{R}}^{1+2}\). Anal. PDE 15(1):245–272 (2022)

  45. Wei, D., Yang, S.: Asymptotic decay for defocusing semilinear wave equations in \({\mathbb{R} }^{1+1}\). Ann. PDE 7, 9 (2021)

    MATH  Google Scholar 

Download references

Acknowledgements

The second author is financially supported by National Natural Science Foundation of China Projects 12071339, 11771325. The authors would like to thank anonymous referee for helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruipeng Shen.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix we give a brief proof of a Morawetz estimate for solutions to 2D wave equation. This kind of Morawetz estimates were first introduced by Nakanishi. For convenience we use the same notation as in Nakanishi [31]:

$$\begin{aligned}&\lambda = \sqrt{t^2+r^2};&\Theta = \frac{(-t,x)}{\lambda };&g = \frac{d-1}{2\lambda } + \frac{t^2-r^2}{2\lambda ^3};&\\&m_h = \Theta \cdot (u_t, \nabla u) + ug;&l(u) = \frac{|\nabla u|^2}{2} - \frac{|u_t|^2}{2} + \frac{|u|^{p+1}}{p+1};&\Box = \partial _t^2 - \Delta ;&\end{aligned}$$

and \((\partial _0, \partial _1, \cdots , \partial _d) = (-\partial ^0, \partial ^1, \cdots , \partial ^d) = (\partial _t, \nabla )\). Then we have an identity

A basic calculation shows that

$$\begin{aligned} \Box g = \frac{(d-3)(d+3)}{2\lambda ^3} + 3(d-1)\frac{t^2-r^2}{\lambda ^5}+15\frac{(t^2-r^2)^2}{2\lambda ^7}. \end{aligned}$$

Thus we may integrate in the region \({{\mathbb {R}}}^2 \times [1,T]\) and obtain

(15)

In order to deal with the terms involving \(|u|^2\), we need to apply Hölder’s inequality

$$\begin{aligned} \int _{{{\mathbb {R}}}^2} \frac{|u(x,t)|^2}{\lambda ^2} dx \le \left( \int _{{{\mathbb {R}}}^2} |u|^{p+1} dx\right) ^{\frac{2}{p+1}} \left( \int _{{{\mathbb {R}}}^2} \lambda ^{-\frac{2(p+1)}{p-1}} dx\right) ^{\frac{p-1}{p+1}} \lesssim _p t^{-\frac{4}{p+1}} E^{\frac{2}{p+1}}. \end{aligned}$$

Next we observe the facts \(|g_t| \lesssim \lambda ^{-2}\), \(|\Box g| \lesssim \lambda ^{-3}\) and obtain

$$\begin{aligned} \left| \int _{{{\mathbb {R}}}^2} \left( -m_h u_t+\frac{t}{\lambda } l(u) + \frac{|u|^2}{2} g_t\right) dx\right|&\lesssim _p \int _{{{\mathbb {R}}}^2} \left( |\nabla u|^2 + |u_t|^2 + |u|^{p+1} + \frac{|u|^2}{\lambda ^2} \right) dx\\&\lesssim _p E + E^{\frac{2}{p+1}}, \end{aligned}$$

and

$$\begin{aligned} \int _{1}^T \int _{{{\mathbb {R}}}^2} \frac{|u|^2}{2} |\Box g| dx dt \le \int _1^T \int _{{{\mathbb {R}}}^2} \frac{|u|^2}{t\lambda ^2} dx dt \lesssim _p E^{\frac{2}{p+1}} \int _1^T t^{-1-\frac{4}{p+1}} dt \lesssim _p E^{\frac{2}{p+1}}. \end{aligned}$$

We plug these upper bound in (15) and conclude

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Shen, R. & Wei, L. Energy distribution of solutions to defocusing semi-linear wave equation in two dimensional space. Math. Ann. 386, 1267–1303 (2023). https://doi.org/10.1007/s00208-022-02440-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02440-6

Mathematics Subject Classification

Navigation