Skip to main content
Log in

On the squeezing function for finitely connected planar domains

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In a recent paper, Ng, Tang and Tsai (Math Ann 380, 1741–1766, https://doi.org/10.1007/s00208-020-02046-w, 2021) have found an explicit formula for the squeezing function of an annulus via the Loewner differential equation. Their result has led them to conjecture a corresponding formula for planar domains of any finite connectivity stating that the extremum in the squeezing function problem is achieved for a suitably chosen conformal mapping onto a circularly slit disk. In this paper we disprove this conjecture. We also give a conceptually simple potential-theoretic proof of the explicit formula for the squeezing function of an annulus which has the added advantage of identifying all extremal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Binder, I., Rojas, C., Yampolsky, M.: Carathéodory convergence and harmonic measure. Potential Anal. 51(4), 499–509 (2019)

    Article  MathSciNet  Google Scholar 

  2. Comerford, M.: The Carathéodory topology for multiply connected domains I. Cent. Eur. J. Math. 11(2), 322–340 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Conway, J.B.: Functions of one complex variable. II, Graduate Texts in Mathematics, vol. 159. Springer, New York (1995)

  4. Crowdy, D.: Solving Problems in Multiply Connected Domains. SIAM, Philadelphia (2020)

    Book  Google Scholar 

  5. Deng, F.: Levi’s problem, convexity, and squeezing functions on bounded domains. In: Proceedings of the Seventh International Congress of Chinese Mathematicians, vol. II, pp. 335–349, Adv. Lect. Math. (ALM), vol. 44. Int. Press, Somerville (2016)

  6. Deng, F., Guan, Q., Zhang, L.: Some properties of squeezing functions on bounded domains. Pac. J. Math. 257(2), 319–341 (2012)

    Article  MathSciNet  Google Scholar 

  7. Deng, F., Guan, Q., Zhang, L.: Properties of squeezing functions and global transformations of bounded domains. Trans. Am. Math. Soc. 368(4), 2679–2696 (2016)

    Article  MathSciNet  Google Scholar 

  8. Fornæss, J.E., Rong, F.: Estimate of the squeezing function for a class of bounded domains. Math. Ann. 371(3–4), 1087–1094 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fornæss, J.E., Shcherbina, N.: A domain with non-plurisubharmonic squeezing function. J. Geom. Anal. 28(1), 13–21 (2018)

    Article  MathSciNet  Google Scholar 

  10. Fornæss, J.E., Wold, E.F.: An estimate for the squeezing function and estimates of invariant metrics. In: Complex Analysis and Geometry, Springer Proc. Math. Stat., vol. 144, pp. 135–147. Springer, Tokyo (2015)

  11. Fornæss, J.E., Wold, E.F.: A non-strictly pseudoconvex domain for which the squeezing function tends to 1 towards the boundary. Pac. J. Math. 297(1), 79–86 (2018)

    Article  MathSciNet  Google Scholar 

  12. Grunsky, H.: Lectures on theory of functions in multiply connected domains. Studia Mathematica. Skript 4. Vandenhoeck & Ruprecht, Göttingen. 253 S. DM 32.00 (1978)

  13. Hayman, W.K., Kennedy, P.B.: Subharmonic Functions, vol. I. Academic Press, London (1976)

    MATH  Google Scholar 

  14. Joo, S., Kim, K.-T.: On boundary points at which the squeezing function tends to one. J. Geom. Anal. 28(3), 2456–2465 (2018)

    Article  MathSciNet  Google Scholar 

  15. Kim, K.-T., Zhang, L.: On the uniform squeezing property of bounded convex domains in \(\mathbb{C}^n\). Pac. J. Math. 282(2), 341–358 (2016)

    Article  Google Scholar 

  16. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. I. J. Differ. Geom. 68(3), 571–637 (2004)

    Article  MathSciNet  Google Scholar 

  17. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. II. J. Differ. Geom. 69(1), 163–216 (2005)

    Article  MathSciNet  Google Scholar 

  18. Nehari, Z.: Conformal Mapping, Reprinting of the 1952 edition. Dover Publications Inc, New York (1975)

    Google Scholar 

  19. Ng, T.W., Tang, C.C., Tsai, J.: The squeezing function on doubly-connected domains via the Loewner differential equation. Math. Ann. 380, 1741–1766 (2021). https://doi.org/10.1007/s00208-020-02046-w

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikolov, N.: Behavior of the squeezing function near h-extendible boundary points. Proc. Am. Math. Soc. 146(8), 3455–3457 (2018)

    Article  MathSciNet  Google Scholar 

  21. Pommerenke, Ch.: Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, vol. 299. Springer, Berlin (1992)

  22. Ransford, T.: Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28. Cambridge University Press, Cambridge (1995)

  23. Reich, E., Warschawski, S.E.: On canonical conformal maps of regions of arbitrary connectivity. Pac. J. Math. 10, 965–985 (1960)

    Article  MathSciNet  Google Scholar 

  24. Saff, E.B., Totik, V.: Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, vol. 316. Springer, Berlin (1997)

  25. Solynin, A.: A note on the squeezing function. Proc. Am. Math. Soc.149, 4743–4755 (2021). https://doi.org/10.1090/proc/15588

  26. Tsuji, M.: Potential Theory in Modern Function Theory. Reprinting of the 1959 original edition. Chelsea Publishing Co., New York (1975)

    Google Scholar 

  27. Yeung, S.-K.: Geometry of domains with the uniform squeezing property. Adv. Math. 221(2), 547–569 (2009)

    Article  MathSciNet  Google Scholar 

  28. Zimmer, A.: A gap theorem for the complex geometry of convex domains. Trans. Am. Math. Soc. 370(10), 7489–7509 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Gumenyuk.

Additional information

Communicated by Ngaiming Mok.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumenyuk, P., Roth, O. On the squeezing function for finitely connected planar domains. Math. Ann. 384, 1–24 (2022). https://doi.org/10.1007/s00208-021-02296-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02296-2

Mathematics Subject Classification

Navigation