Skip to main content
Log in

Proofs of Ibukiyama’s conjectures on Siegel modular forms of half-integral weight and of degree 2

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove Ibukiyama’s conjectures on Siegel modular forms of half-integral weight and of degree 2 by using Arthur’s multiplicity formula on the split odd special orthogonal group \({\text {SO}}_5\) and Gan–Ichino’s multiplicity formula on the metaplectic group \({\text {Mp}}_4\). In the proof, the representation theory of the Jacobi groups also plays an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.: The theta correspondence over \({{\mathbb{R}}}\), Harmonic analysis, group representations, automorphic forms and invariant theory, pp. 1–39, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 12, World Sci. Publ., Hackensack, NJ, (2007)

  2. Adams, J., Barbasch, D.: Reductive dual pair correspondence for complex groups. J. Funct. Anal. 132(1), 1–42 (1995)

    Article  MathSciNet  Google Scholar 

  3. Adams, J., Barbasch, D.: Genuine representations of the metaplectic group. Compos. Math. 113(1), 23–66 (1998)

    Article  MathSciNet  Google Scholar 

  4. Andrianov, A.N., Zhuravlev, V.G.: Modular forms and Hecke operators, Translations of Mathematical Monographs, vol. 145. Amer. Math. Soc, Providence, RI (1995)

    Google Scholar 

  5. Arthur, J.: The endoscopic classification of representations: orthogonal and symplectic groups. American Mathematical Society Colloquium Publications 61,(2013)

  6. Asgari, M., Schmidt, R.: Siegel modular forms and representations. Manuscripta Math. 104(2), 173–200 (2001)

    Article  MathSciNet  Google Scholar 

  7. Berndt, R., Schmidt, R.: Elements of the representation theory of the Jacobi group. Birkhäuser, Basel (1998)

    Book  Google Scholar 

  8. Chenevier, G., Lannes, J.: Automorphic forms and even unimodular lattices, Ergeb. Math. Grenz. (3), 69, Springer Verlag, (2019)

  9. Gan, W.T.: A Langlands Program for Covering Groups?, Proceedings of the Sixth International Congress of Chinese Mathematicians, vol. I, pp. 57–78. Adv. Lect. Math. 36. Somerville, MA: Int. Press, (2017)

  10. Gan, W.T., Ichino, A.: The Shimura-Waldspurger correspondence for \({\rm Mp}_{2n}\). Ann. Math. (2) 188(3), 965–1016 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gan, W.T., Ichino, A.: The automorphic discrete spectrum of \({\rm Mp}_4\), Int. Math. Res. Not., rnaa 121, (2020)

  12. Gan, W.T., Savin, G.: Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence. Compos. Math. 148(6), 1655–1694 (2012)

    Article  MathSciNet  Google Scholar 

  13. Harris, M., Taylor, R.: On the Geometry and Cohomology of Some Simple Shimura Varieties, Ann. of Math. Studies 151, Princeton Univ. Press, Princeton, N.J., (2001)

  14. Henniart, G.: Une preuve simple des conjectures de Langlands de \({\rm GL}(n)\) sur un corps \(p\)-adique. Invent. Math. 139, 439–455 (2000)

    Article  MathSciNet  Google Scholar 

  15. Hiraga, K., Ikeda, T.: On the Kohnen plus space for Hilbert modular forms of half-integral weight I. Compos. Math. 149, 1963–2010 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ibukiyama, T.: A conjecture on a Shimura type correspondence for Siegel modular forms, and Harder’s conjecture on congruences, Modular Forms on Schiermonnikoog Edited by Bas Edixhoven, Gerard van der Geer and Ben Moonen, Cambridge University Press, pp. 107-144, (2008)

  17. Ibukiyama, T.: Conjectures of Shimura type and of Harder type revisited. Comment. Math. Univ. St. Paul. 41, 79–103 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Kohnen, W.: Modular forms of half integral weight on \(\Gamma _0(4)\). Math. Ann. 248, 249–266 (1980)

    Article  MathSciNet  Google Scholar 

  19. Langlands, R.P.: On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr. 31, Am. Math. Soc., Providence, RI, pp. 101-170, (1989)

  20. Mœglin, C., Renard, D.: Sur les paquets d’Arthur des groupes classiques réels. J. Eur. Math. Soc. 22(6), 1827–1892 (2020)

    Article  MathSciNet  Google Scholar 

  21. Mœglin, C., Renard, D.: Sur les paquets d’Arthur aux places réelles, translation, Geometric Aspects of the Trace Formula, Edited by W. Müller, S.-W. Shin, N. Templier, Simons Symposia, Springer, Cham., pp.299-320, (2018)

  22. Murase, A.: \(L\)-functions attached to Jacobi forms of degree \(n\). Part I: The basic identity. J. Reine Ang. Math. 401, 122–156 (1989)

    MATH  Google Scholar 

  23. Ranga Rao, R.: On some explicit formulas in the theory of Weil representation. Pac. J. Math. 157(2), 335–371 (1993)

    Article  MathSciNet  Google Scholar 

  24. Schmidt, R.: Spherical representations of the Jacobi group. Abh. Math. Sem. Univ. Hamburg 68, 273–296 (1998)

    Article  MathSciNet  Google Scholar 

  25. Shimura, G.: On modular forms of half integral weight. Ann. Math. 2(97), 440–481 (1973)

    Article  MathSciNet  Google Scholar 

  26. Su, R.H.: The Kohnen plus space for Hilbert-Siegel modular forms. J. Number Theory 163, 267–295 (2016)

    Article  MathSciNet  Google Scholar 

  27. Sun, B.: On representations of real Jacobi groups. Sci. China Math. 55(3), 541–555 (2012)

    Article  MathSciNet  Google Scholar 

  28. Szpruch, D.: Computation of the local coefficients for principal series representations of the metaplectic double cover of \({\rm SL}_2({\mathbb{F}})\). J. Number Theory 129(9), 2180–2213 (2009)

    Article  MathSciNet  Google Scholar 

  29. Waldspurger, J.-L.: Correspondance de Shimura. J. Math. Pures Appl. (9) 59(1), 1–132 (1980)

    MathSciNet  MATH  Google Scholar 

  30. Waldspurger, J.-L.: Correspondances de Shimura et quaternions. Forum Math. 3(3), 219–307 (1991)

    Article  MathSciNet  Google Scholar 

  31. Zhuravlev, V.G.: Hecke rings for a covering of the symplectic group, Math. Sbornik. 121(163) No.3 381-402, (1983)

Download references

Acknowledgements

The author thanks his supervisor Atsushi Ichino for suggesting the problem and for his helpful advice, and Tamotsu Ikeda and Hiraku Atobe for sincere and useful comments. The author also thanks Hiraku Atobe and Tomoyoshi Ibukiyama for bringing a book [8] and a paper [17], respectively, to the attention of the author. This work was partially supported by JSPS Research Fellowships for Young Scientists KAKENHI Grant Number 20J11779.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ishimoto.

Additional information

Communicated by Wei Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The adelic lift of \(F \in S_{k-\frac{1}{2}, j}^+(\varGamma _0(4), (\frac{-1}{\cdot })^l)\)

The adelic lift of \(F \in S_{k-\frac{1}{2}, j}^+(\varGamma _0(4), (\frac{-1}{\cdot })^l)\)

In this appendix, we consider the adelic lifts of Siegel cusp forms of half-integral weight. Note that any argument here is not needed to prove Theorem 2.1. Let \(j\ge 0\) and \(k\ge 3\) be integers, \(l \in {\mathbb {Z}}/2{\mathbb {Z}}\), and \(\psi \) the nontrivial additive character of \({\mathbb {Q}}\backslash {\mathbb {A}}\) such that \(\psi _\infty =\mathbf{e }\). If j is odd, then the plus space \(S_{k-\frac{1}{2},j}^+(\varGamma _0(4), \left( \frac{-1}{\cdot }\right) ^l)\) is zero, and the arguments in this section are trivially true. Hence we assume that j is even.

For any prime number p, the restriction of the Weil representation \(\omega _{\psi _p}\) of \({\text {Mp}}_4({\mathbb {Q}}_p)\) to the metaplectic covering \(\widetilde{\varGamma }_0(4)_p\) over

defines a genuine character \(\varepsilon _p\) of \(\widetilde{\varGamma }_0(4)_p\) by

$$\begin{aligned} \omega _{\psi _p}(\gamma ) 1_{{\mathbb {Z}}_p^2}&=\varepsilon _p(\gamma )^{-1}1_{{\mathbb {Z}}_p^2},&\gamma&\in \widetilde{\varGamma }_0(4)_p. \end{aligned}$$

Note that if \(p\ne 2\), \(\varepsilon _p\) is quadratic and defines the splitting (5) over \(\varGamma _0(4)_p={\text {Sp}}_4({\mathbb {Z}}_p)\). Then, these characters define a genuine character \(\varepsilon _{ fin }=\prod _p \varepsilon _p\) of a subgroup

$$\begin{aligned} \widetilde{\varGamma }_0(4)_{ fin }= \widetilde{\varGamma }_0(4)_2 \times \prod _{p\ne 2} \varGamma _0(4)_p \end{aligned}$$

of \({\text {Mp}}_4({\mathbb {A}})\). At the real place, the Weil representation defines the factor of automorphy \(j_\infty (g,Z)\) by

$$\begin{aligned} \omega _{\psi _\infty }(g)\varphi _Z =j_\infty (g,Z)^{-1}\varphi _{gZ}, \end{aligned}$$

for \(g \in {\text {Mp}}_4({\mathbb {R}})\) and \(Z \in {\mathfrak {H}}_2\), where

$$\begin{aligned} \varphi _Z(x) =\mathbf{e }({}^{\mathrm t}{}{x}Zx) \in {\mathcal {S}}({\mathbb {R}}^2). \end{aligned}$$

Note that the weight of the character \(j_\infty (-, i) : \widetilde{K_\infty } \rightarrow {\mathbb {C}}^\times \) relative to the additive character \(\psi _\infty =\mathbf{e }\) is \((\frac{1}{2}, \ldots , \frac{1}{2})\). Then it is known that for any \(\gamma \in \varGamma _0(4)\), we have

$$\begin{aligned} \frac{\theta (\gamma Z)}{\theta (Z)} =j_\infty ((\gamma ,1),Z) \varepsilon _{ fin }((\gamma ,1)). \end{aligned}$$

The strong approximation theorem for \({\text {Sp}}_4\) induces that for \({\text {Mp}}_4\), hence we have

$$\begin{aligned} {\text {Mp}}_4({\mathbb {A}}) ={\text {Sp}}_4({\mathbb {Q}}) {\text {Mp}}_4({\mathbb {R}}) \widetilde{\varGamma _0}(4)_{ fin }. \end{aligned}$$

Let \(F\in S_{k-\frac{1}{2},j}^+(\varGamma _0(4), \left( \frac{-1}{\cdot }\right) ^l)\) be a Siegel modular form. Now the adelic lift \(\varPhi _F\) of F is defined by

$$\begin{aligned} \varPhi _F(g) =\left( \frac{-1}{\kappa } \right) ^l \left\{ j_\infty (g_\infty , i) \varepsilon _{ fin }(\kappa ) \right\} ^{-(2k-1)} {\text {Sym}}_j(J(g_\infty ,i))^{-1}F(g_\infty i), \end{aligned}$$

where \(g=\gamma g_\infty \kappa \in {\text {Mp}}_4({\mathbb {A}})={\text {Sp}}_4({\mathbb {Q}}) {\text {Mp}}_4({\mathbb {R}}) \widetilde{\varGamma _0}(4)_{ fin }\). Here, note that \(\left( \frac{-1}{\kappa } \right) =\left( \frac{-1}{\kappa _2} \right) \), (\(\kappa =(\kappa _p)_p\)). The function \(\varPhi _F\) is well-defined.

Proposition A.1

The function \(\varPhi _F : {\text {Mp}}_4({\mathbb {A}}) \rightarrow V_j\) satisfies the following:

  1. (1)

    \(\varPhi _F\) is left \({\text {Sp}}_4({\mathbb {Q}})\)-invariant;

  2. (2)

    \(\varPhi _F\) is right \({\text {Sp}}_4({\mathbb {Z}}_p)\)-invariant for \(p\ne 2\);

  3. (3)

    \(\varPhi _F(gx) = j_\infty (x,i)^{-2k+1} {\text {Sym}}_j(J(x,i))^{-1}\varPhi _F(g)\), for any \(g\in {\text {Mp}}_4({\mathbb {R}})\), \(x\in \widetilde{K_\infty }\);

  4. (4)

    \({\mathfrak {p}}_{\mathbb {C}}^- \cdot \varPhi _F = 0\);

  5. (5)

    \(\varPhi _F\) is cuspidal.

Proof

The proof is similar to that of [6, Theorem 1]. \(\square \)

Since the complex conjugate \(\overline{{\text {Sym}}_j}\) is isomorphic to the contragredient representation of \({\text {Sym}}_j\), by a similar argument to [8, §4.5 and §6.3.4], we can construct an automorphic cuspidal representation

$$\begin{aligned} \pi _F=\bigotimes _v \pi _{F,v} \subset L^2_\text {disc}({\text {Mp}}_4). \end{aligned}$$

and check that it is a direct sum \(\oplus _i \pi _i\) of a finite number of irreducible automorphic cuspidal representations \(\pi _i=\otimes _v \pi _{i,v}\) such that

  • \(\pi _{i, p}\) are unramified and isomorphic to each other for any odd prime p;

  • \(\pi _{i,\infty } =\pi _{(k+j-\frac{1}{2}, k-\frac{1}{2}), \mathbf{e }} =\pi _{(-k+\frac{1}{2}, -j-k+\frac{1}{2}), {\overline{\mathbf{e }}}}\) for any i.

In particular, \(\pi _i\) are nearly equivalent. Moreover, we have the following lemma.

Lemma A.2

Let p be an odd prime.

  1. (1)

    Assume that \(l\equiv k \pmod 2\), and let \((\alpha _1, \alpha _2)\) be the Satake parameter of \(\pi _{i, p}\) with respect to \({\overline{\psi }}_p\). Then we have

    $$\begin{aligned} \eta (p)&=\left( \frac{-1}{p}\right) ^k p^2(\alpha _1+\alpha _2+\alpha _1^{-1}+\alpha _2^{-1}),\\ \omega (p)&=p^3(\alpha _1\alpha _2+\alpha _1\alpha _2^{-1}+\alpha _1^{-1}\alpha _2+\alpha _1^{-1}\alpha _2^{-1}+1-p^{-2}), \end{aligned}$$

    and hence

    $$\begin{aligned} L(s, F)_p =L(s-k-j+\tfrac{3}{2}, \pi _{i,p}, {\overline{\psi }}_p). \end{aligned}$$
  2. (2)

    Assume that \(l\equiv k-1 \pmod 2\), and let \((\alpha _1, \alpha _2)\) be the Satake parameter of \(\pi _{i, p}\) with respect to \(\psi _p\). Then we have

    $$\begin{aligned} \eta (p)&=\left( \frac{-1}{p}\right) ^{k+1} p^2(\alpha _1+\alpha _2+\alpha _1^{-1}+\alpha _2^{-1}),\\ \omega (p)&=p^3(\alpha _1\alpha _2+\alpha _1\alpha _2^{-1}+\alpha _1^{-1}\alpha _2+\alpha _1^{-1}\alpha _2^{-1}+1-p^{-2}), \end{aligned}$$

    and hence

    $$\begin{aligned} L(s,F)_p =L(s-k-j+\tfrac{3}{2}, \pi _{i,p}, \psi _p). \end{aligned}$$

Proof

Complete systems \(\{\widetilde{g}_{s,t}\}_t\) of representatives of the right coset decompositions

$$\begin{aligned} \widetilde{\varGamma }_0(4) (K_s(p^2), p^{1-\frac{s}{2}}) \widetilde{\varGamma }_0(4) =\bigsqcup _t \widetilde{\varGamma }_0(4) \widetilde{g}_{s,t} \end{aligned}$$

are explicitly given by Zhuravlev [31]. Thus the assertions are proved by straightforward calculation. \(\square \)

Let us recall from Theorem 4.1 that we have an isomorphism \(\varPsi \). Put

$$\begin{aligned} F'=\varPsi ^{-1}(F) \in {\left\{ \begin{array}{ll} J_{(k,j),1}^\text {hol, cusp},&{}\text { when }l\equiv k \pmod 2,\\ J_{(k,j),1}^\text {skew, cusp},&{}\text { when }l\equiv k-1 \pmod 2, \end{array}\right. } \end{aligned}$$

and write

$$\begin{aligned} \pi _{F'} =\pi ' \otimes \pi _{ SW , \psi } =\bigotimes _v \left( \pi '_p \otimes \pi _{ SW , \psi _p} \right) . \end{aligned}$$

Then \(\pi _F\) and \(\pi '\) are related as follows.

Theorem A.3

The automorphic representation \(\pi _F\) is irreducible, and if we write

$$\begin{aligned} \pi _F=\bigotimes _v \pi _{F, v}, \end{aligned}$$

then we have the following.

  1. (1)

    Assume that \(l\equiv k \pmod 2\). Then we have \(\pi _{F, v}\cong \pi '_v\) for every place v, i.e., \(\pi _F \cong \pi '\).

  2. (2)

    Assume that \(l\equiv k-1 \pmod 2\). Then the L-parameter and the character of its component group associated to \(\pi _{F,v}\) relative to \(\psi _v\) coincide with those associated to \(\pi '_v\) relative to \({\overline{\psi }}_v\).

Proof

(1) At the real place, by (19) we have

$$\begin{aligned} \pi _{i,\infty } \cong \pi _{(k+j-\frac{1}{2}, k-\frac{1}{2}), \mathbf{e }} \cong \pi '_\infty . \end{aligned}$$

At every finite place p except 2, by Lemmas 6.7 and A.2 we have

$$\begin{aligned} L(s-k-j+\tfrac{3}{2}, \pi _{i,p}, {\overline{\psi }}_p) =L(s, F)_p =L(s-k-j+\tfrac{3}{2}, \pi '_p, {\overline{\psi }}_p). \end{aligned}$$

Since both of \(\pi _{i,p}\) and \(\pi '_p\) are unramified representation of \({\text {Mp}}_4({\mathbb {Q}}_p)\), they are isomorphic. In particular, \(\pi _i\) and \(\pi '\) are nearly equivalent, and hence the A-parameter of \(\pi _i\) relative to \({\overline{\psi }}\) is that of \(\pi '\) relative to \({\overline{\psi }}\). By the proof of Lemma 6.9, the A-parameter of \(\pi '\) relative to \({\overline{\psi }}\) is tempered. (Note that the case (5) may occur.) Since the local L-packet of an unramified L-parameter for \({\text {Mp}}_4\) is a singleton, this implies that

$$\begin{aligned} \pi _{i,2} \cong \pi '_2. \end{aligned}$$

Hence \(\pi _F\) is isomorphic to a direct sum of \(\pi '\). Since Gan–Ichino’s multiplicity formula tells us that \(\pi '\) appears in \(L^2_\text {disc}({\text {Mp}}_4)\) with multiplicity one, the assertion follows.

(2) At the real place, since

$$\begin{aligned} \pi _{i,\infty }&\cong \pi _{(k+j-\frac{1}{2}, k-\frac{1}{2}), \mathbf{e }},&\pi '_\infty&\cong \pi _{(k+j-\frac{1}{2},k-\frac{1}{2}), {\overline{\mathbf{e }}}}, \end{aligned}$$

the L-parameter and the character of its component group associated to \(\pi _{i,\infty }\) relative to \(\psi _\infty \) coincide with those associated to \(\pi '_\infty \) relative to \({\overline{\psi }}_\infty \). At every finite place p except 2, by Lemmas 6.7 and A.2 we have

$$\begin{aligned} L(s-k-j+\tfrac{3}{2}, \pi _{i,p}, \psi _p) =L(s,F)_p =L(s-k-j+\tfrac{3}{2}, \pi '_p, {\overline{\psi }}_p). \end{aligned}$$

Since the local L-packet of an unramified L-parameter for \({\text {Mp}}_4\) is a singleton, there is a similar relation between \(\pi _{i,p}\) and \(\pi '_p\). Hence the A-parameter of \(\pi _i\) relative to \(\psi \) is that of \(\pi '\) relative to \({\overline{\psi }}\), which is tempered. Then the assertion follows from the same argument as the proof of (1). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishimoto, H. Proofs of Ibukiyama’s conjectures on Siegel modular forms of half-integral weight and of degree 2. Math. Ann. 383, 645–698 (2022). https://doi.org/10.1007/s00208-021-02232-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02232-4

Keywords

Mathematics Subject Classification

Navigation