Skip to main content
Log in

Minimal cones and self-expanding solutions for mean curvature flows

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we study self-expanding solutions for mean curvature flows and their relationship to minimal cones in Euclidean space. Ilmanen (Lectures on mean curvature flow and related equations (Trieste Notes), 1995) proved the existence of self-expanding hypersurfaces with prescribed tangent cones at infinity. If the cone is \(C^{3,\alpha }\)-regular and mean convex (but not area-minimizing), we can prove that the corresponding self-expanding hypersurfaces are smooth, embedded, and have positive mean curvature everywhere (see Theorem 1.1). As a result, for regular minimal but not area-minimizing cones we can give an affirmative answer to a problem arisen by Lawson (Brothers, in Proc Sympos Pure Math 44:441–464, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S., Ilmanen, T., Chopp, D.L.: A computed example of nonuniqueness of mean curvature flow in \(\mathbb{R}^3\). Comm. Partial Differ. Equ. 20(11&12), 1937–1958 (1995)

    Article  Google Scholar 

  2. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969)

    Article  MathSciNet  Google Scholar 

  3. Brakke, K.: The motion of a surface by its mean curvature, Mathematical Notes, 20. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  4. Brothers, J.E.: Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS summer institute. Geometric measure theory and the calculus of variations (Arcata, Calif., 1984). Proc. Sympos. Pure Math. 44, 441–464 (1986). (Am. Math. Soc., Providence, RI, 1986)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L., Hardt, R., Simon, L.: Minimal surfaces with isolated singularities. Manuscripta Math. 48, 1–18 (1984)

    Article  MathSciNet  Google Scholar 

  6. Cheng, X., Zhou, D.: Volume estimate about shrinkers. Proc. Am. Math. Soc. 141(2), 687–696 (2013)

    Article  MathSciNet  Google Scholar 

  7. Chan, C.C.: Complete minimal hypersurfaces with prescribed asymptotics at infinity. J. Reine Angew. Math. 483, 163–181 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Colding, T.H., Minicozii II, W.P.: A course in minimal surfaces, Graduate Studies in Mathematics, vol. 121. American Mathematical Society, Providence, Rhode Island (2011)

    Google Scholar 

  9. Colding, T.H., II Minicozii, W.P.: Generic mean curvature flow I: generic singularities. Ann. Math. 175(2)(2), 755–833 (2012)

    Article  MathSciNet  Google Scholar 

  10. Ding, Q.: The lower bounds on density for minimal but not minimizing hypercones in Euclidean space (preprint)

  11. Ding, Q., Jost, J., Xin, Y.: Existence and non-existence of area-minimizing hypersurfaces in manifolds of non-negative Ricci curvature. Am. J. Math. 138(2), 287–327 (2016)

    Article  MathSciNet  Google Scholar 

  12. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 130(2)(3), 453–471 (1989)

    Article  MathSciNet  Google Scholar 

  13. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin-New York (1983)

    Book  Google Scholar 

  14. Han, Q., Lin, F.-H.: Nodal sets of solutions of elliptic differential equations (preprint)

  15. Hardt, R., Simon, L.: Area minimizing hypersurfaces with isolated singularities. J. Reine Angew. Math. 362, 102–129 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    Article  MathSciNet  Google Scholar 

  17. Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Math. 1713, Springer, New York, pp 45–84 (1999)

  18. Ilmanen, T.: Lectures on Mean Curvature Flow and Related Equations (Trieste Notes) (1995)

  19. Ilmanen, T.: Singularities of mean curvature flow of surfaces, preprint (1995)

  20. Ilmanen, T.: A strong maximum principle for singular minimal hypersurfaces. Calc. Var. 4, 443–467 (1996)

    Article  MathSciNet  Google Scholar 

  21. Ilmanen, T., Neves, A., Schulze, F.: On short time existence for the planar network flow. arXiv:1407.4756 (2014)

  22. Ecker, K.: A local monotonicity formula for mean curvature flow. Ann. Math. (2) 154(2), 503–525 (2001)

    Article  MathSciNet  Google Scholar 

  23. Li, P.: Harmonic Functions and Applications to Complete Manifolds. University of California, Irvine (2004) (preprint)

  24. Lin, F.-H.: Approximation by smooth embedded hypersurfaces with positive mean curvature. Bull. Austral. Math. Soc. 36(2), 197–208 (1987)

    Article  MathSciNet  Google Scholar 

  25. Lin, F.-H.: Minimality and stability of minimal hypersurfaces in \(\mathbb{R}^n\). Bull. Austral. Math. Soc. 36(2), 209–214 (1987)

    Article  MathSciNet  Google Scholar 

  26. Lin, F.H., Yang, X.P.: Geometric measure theory: an introduction. Science Press, Boston (2002)

    MATH  Google Scholar 

  27. McIntosh, R.: Perturbing away singularities from area-minimizing hypercones. J. Reine Angew. Math. 377, 210–218 (1987)

    MathSciNet  MATH  Google Scholar 

  28. Neves, A.: Recent Progress on Singularities of Lagrangian Mean Curvature Flow, to appear on volume celebrating Prof. Schoen’s 60th birthday

  29. Neves, A., Tian, G.: Translating solutions to Lagrangian mean curvature flow. Trans. Am. Math. Soc. 365(11), 5655–5680 (2013)

    Article  MathSciNet  Google Scholar 

  30. Schnürer, O.C., Schulze, F.: Self-similarly expanding networks to curve shortening flow. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(4), 511–528 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the center for mathematical analysis Australian national university, Vol. 3 (1983)

  32. Simon, L., Solomon, B.: Minimal hypersurfaces asymptotic to quadratic cones in \(\mathbb{R}^{n+1}\). Invent. Math. 86, 535–551 (1986)

    Article  MathSciNet  Google Scholar 

  33. Simon, L.: A strict maximum principle for area minimizing hypersurfaces. J. Differ. Geom. 26, 327–335 (1987)

    Article  MathSciNet  Google Scholar 

  34. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. 88, 62–105 (1968)

    Article  MathSciNet  Google Scholar 

  35. Solomon, B., White, B.: A strong maximum principle for varifolds that are stationary with respect to even parametric elliptic functionals. Indiana J. Math. 38, 683–691 (1989)

    Article  MathSciNet  Google Scholar 

  36. Stavrou, N.: Selfsimilar solutions to the mean curvature flow. J. Reine Angew. Math. 499, 189–198 (1998)

    Article  MathSciNet  Google Scholar 

  37. Wang, L.: Uniqueness of self-similar shrinkers with asymptotically conical ends. J. Am. Math. Soc. 27(3), 613–638 (2014)

    Article  MathSciNet  Google Scholar 

  38. Wang, M.-T.: The Dirichlet Problem for the minimal surface system in arbitrary dimensions and codimensions. Comm. Pure Appl. Math. 57(2), 267–281 (2004)

    Article  MathSciNet  Google Scholar 

  39. White, B.: A local regularity theorem for mean curvature flow. Ann. Math. 161(2)(3), 1487–1519 (2005)

    Article  MathSciNet  Google Scholar 

  40. Wickramasekera, N.: A general regularity theory for stable codimension 1 integral varifolds. Ann. Math. 179, 843–1007 (2014)

    Article  MathSciNet  Google Scholar 

  41. Wickramasekera, N.: A sharp strong maximum principle and a sharp unique continuation theorem for singular minimal hypersurfaces. Calc. Var. Partial Differ. Equ. 51, 799–812 (2014)

    Article  MathSciNet  Google Scholar 

  42. Xin, Y.L.: Minimal Submanifolds and Related Topics. World Scientific Publ, Singapore (2003)

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to Prof. Y. L. Xin for inspiring discussion and valuable advice, and to Prof. J. Jost for his constant encouragement and support. He would also like to thank Prof. F. Morgan for his interests and suggestions. The author would like to express his sincere gratitude to the referees for valuable comments that will help to improve the quality of the manuscript. The author is supported partially by Natural Science Foundation of Shanghai (Grant No. 15ZR1402200) and Shanghai Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Ding.

Additional information

Communicated by F.C. Marques.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q. Minimal cones and self-expanding solutions for mean curvature flows. Math. Ann. 376, 359–405 (2020). https://doi.org/10.1007/s00208-019-01941-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01941-1

Navigation