Skip to main content
Log in

Fuglede’s conjecture holds in \(\mathbb {Q}_{p}\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove Fuglede’s conjecture in \(\mathbb {Q}_p\) which states that a Borel set of positive and finite Haar measure in \(\mathbb {Q}_{p}\) is a spectral set if and only if it tiles \(\mathbb {Q}_p\) by translations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, A., Holroyd, F.C.: Some results on one-dimensional tilings. Geom. Dedic. 10, 49–58 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aten, C., Ayachi, B., Bau, E., FitzPatrick, D., Iosevich, A., Liu, H., Lott, A., MacKinnon, I., Maimon, S., Nan, S., Pakianathan, J., Petridis, G., Rojas Mena, C., Sheikh, A., Tribone, T., Weill, J., Yu, C.: Tiling sets and spectral sets over finite fields. J. Funct. Anal. 273(8), 2547–2577 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albeverio, S., Khrennikov, A., Shelkovich, V.: Theory of \(p\)-Adic Distributions: Linear and Nonlinear Models. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  4. Bandt, C.: Self-similar sets 5: integer matrices and fractal tilings of \(\mathbb{R}^n\). Proc. Am. Math. Soc. 112, 549–562 (1991)

    MATH  Google Scholar 

  5. Bose, D., Madan, S.: “Spectral implies tiling” for three intervals revisited. Forum Math. 26(4), 1247–1260 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bose, D., Kumar, C.P.A., Krishnan, R., Madan, S.: On Fuglede’s conjecture for three intervals. Online J. Anal. Comb. No. 5, 24 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Fan, A.H.: Spectral measures on local fields. In: Bohner, M. (ed.) Difference Equations, Discrete Dynamical Systems and Applications, Springer Proceedings in Mathematics & Statistics 150, pp. 15–35. Springer, Geneva (2015). arXiv:1505.06230

    Chapter  Google Scholar 

  8. Fan, A.H., Fan, S.L.: Bounded Tiles in \(\mathbb{Q}_p\) are Compact Open Sets. arXiv:1511.06404

  9. Fan, A.H., Fan, S.L., Shi, R.X.: Compact open spectral sets in \(\mathbb{Q}_p\). J. Funct. Anal. 271(12), 3628–3661 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farkas, B., Révész, S.G.: Tiles with no spectra in dimension 4. Math. Scand. 98, 44–52 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Farkas, B., Matolcsi, M., Móra, P.: On Fuglede’s conjecture and the existence of universal spectra. J. Fourier Anal. Appl. 12(5), 483–494 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferguson, S.J., Sothanaphan, N.: Fuglede’s conjecture fails in 4 dimensions over odd prime fields. Discret. Math. (2019). https://doi.org/10.1016/j.disc.2019.04.026. (published on line)

    Google Scholar 

  14. Gröchenig, K.H., Haas, A.: Self-similar lattice tilings. J. Fourier Anal. 1, 131–170 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iosevich, A., Katz, N., Tao, T.: The Fuglede spectral conjecture holds for convex planar domains. Math. Res. Lett. 10(5–6), 559–569 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iosevich, A., Mayeli, A., Pakianathan, J.: The Fuglede conjecture holds in \(\mathbb{Z}_p\times \mathbb{Z}_p\). Anal. PDE 10(4), 757–764 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jorgensen, P., Pedersen, S.: Dense analytic subspaces in fractal \(L^2\)-spaces. J. Anal. Math. 75, 185–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jorgensen, P., Pedersen, S.: Spectral pairs in Cartesian coordinates. J. Fourier Anal. Appl. 5, 285–302 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kadir, M.: Spectral sets and tiles on vector space over local fields. J. Math. Anal. Appl. 440(1), 240–249 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kolountzakis, M.N., Lagarias, J.C.: Structure of tilings of the line by a function. Duke Math. J 82(3), 653–678 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolountzakis, M.N.: The study of translational tiling with Fourier analysis. In: Proceedings of the Milano Conference on Fourier Analysis and Convexity, pp. 131–187 (2001)

  22. Kolountzakis, M.N., Matolcsi, M.: Tiles with no spectra. Forum Math. 18, 519–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kolountzakis, M.N., Matolcsi, M.: Complex Hadamard matrices and the spectral set conjecture. Collect. Math. 57, 281–291 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Kiss, G., Malikiosis, R.D., Somlai, G., Vizer, M.: On the Discrete Fuglede and Pompeiu Problems. arXiv:1807.02844

  25. Malikiosis, R.D., Kolountzakis, M.N.: Fuglede’s conjecture on cyclic groups of order \(p^nq\). Discret. Anal. 12, 16 (2017)

    MATH  Google Scholar 

  26. Lev, N., Matolcsi, M.: The Fuglede conjecture for convex domains is true in all dimensions. arXiv:1904.12262

  27. Kenyon, R.: Self-Similar Tilings. Ph.D. thesis, Princeton University (1990)

  28. Matolcsi, M.: Fuglede conjecture fails in dimension 4. Proc. Am. Math. Soc. 133, 3021–3026 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lau, K.S., Rao, H.: On one-dimensional self-similar tilings and the \(pq\)-tilings. Trans. Am. Math. Soc. 355, 1401–1414 (2003)

    Article  MATH  Google Scholar 

  30. Łaba, I.: Fuglede’s conjecture for a union of two intervals. Proc. Am. Math. Soc. 129(10), 2965–2972 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Łaba, I.: The spectral set conjecture and multiplicative properties of roots of polynomials. J. Lond. Math. Soc. 2(65), 661–671 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Lagarias, J.C., Wang, Y.: Integral self-affine tiles in \(\mathbb{R}^n\) I. Standard and non-standard digits sets. J. Lond. Math. Soc. (2) 54, 161–179 (1996)

    Article  MATH  Google Scholar 

  33. Lagarias, J.C., Wang, Y.: Tiling the line with translates of one tile. Invent. Math. 124, 341–365 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Popken, J., Turkstra, H.: A P-adic analogue of a theorem of Lebesgue in the theory of measure. Nederl. Akad. Wetensch. Proc. 49, 802–814 (1946). (Indagationes Math. 8, 505–517)

    MathSciNet  MATH  Google Scholar 

  35. Shi, R.X.: Fuglede’s Conjecture Holds on Cyclic Groups \(\mathbb{Z}_{pqr}\). arXiv:1805.11261

  36. Schoenberg, I.J.: A note on the cyclotomic polynomial. Mathematika 11(02), 131–136 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tijdeman, R.: Decomposition of the integers as a direct sum of two subsets. In: David, S. (ed.) Number Theory Seminar Paris 1993, pp. 261–276. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  38. Taibleson, M.H.: Fourier Analysis on Local Fields. Princeton University Press, Princeton (1975)

    MATH  Google Scholar 

  39. Tao, T.: Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11, 251–258 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: P-adic Analysis and Mathematical Physics. World Scientific Publishing, Singapore (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihua Fan.

Additional information

Communicated by A. Venkatesh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. H. FAN was supported by NSF of China (Grant no. 11471132); S. L. FAN was supported by NSF of China (Grant no. 11401236) and Fundamental Research Funds for the Central Universities (Grant no. CCNU19QN076).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, A., Fan, S., Liao, L. et al. Fuglede’s conjecture holds in \(\mathbb {Q}_{p}\). Math. Ann. 375, 315–341 (2019). https://doi.org/10.1007/s00208-019-01867-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01867-8

Keyword

Mathematics Subject Classification

Navigation