Skip to main content
Log in

Random fields and the enumerative geometry of lines on real and complex hypersurfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We introduce a probabilistic framework for the study of real and complex enumerative geometry of lines on hypersurfaces. This can be considered as a further step in the original Shub–Smale program of studying the real zeros of random polynomial systems. Our technique is general, and it also applies, for example, to the case of the enumerative geometry of flats on complete intersections. We derive a formula expressing the average number \(E_n\) of real lines on a random hypersurface of degree \(2n-3\) in \({\mathbb {R}}{\text {P}}^n\) in terms of the expected modulus of the determinant of a special random matrix. In the case \(n=3\) we prove that the average number of real lines on a random cubic surface in \({\mathbb {R}}{\text {P}}^3\) equals:

$$\begin{aligned} E_3=6\sqrt{2}-3. \end{aligned}$$

This technique can also be applied to express the number \(C_n\) of complex lines on a generic hypersurface of degree \(2n-3\) in \({\mathbb {C}}{\text {P}}^n\) in terms of the expectation of the square of the modulus of the determinant of a random Hermitian matrix. As a special case, we recover the classical statement \(C_3=27\). We determine, at the logarithmic scale, the asymptotic of the quantity \(E_n\), by relating it to \(C_n\) (whose asymptotic has been recently computed in [19]). Specifically we prove that:

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\log E_n}{\log C_n}=\frac{1}{2}. \end{aligned}$$

Finally we show that this approach can be used to compute the number \(R_n=(2n-3)!!\) of real lines, counted with their intrinsic signs (as defined in [28]), on a generic real hypersurface of degree \(2n-3\) in \({\mathbb {R}}{\text {P}}^n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. “Equivalently” for our purposes, as we will only be interested in properties that depend on the zero set of a polynomial.

  2. Here and below in the paper we use the notation m!! (the “double-factorial”) to denote the product of all positive integers that have the same parity as n; e.g. when \(m=2n-3\) is odd, \((2n-3)!!\) denotes the product of all odd numbers smaller than or equal to \(2n-3\).

  3. In fact recently Kharlamov and Finashin have identified a class of problems for which this type of signed count is defined [15], including some classical Schubert problems.

  4. This inner product has also been referred to as the “Fischer product”, especially in the field of holomorphic PDE (e.g., see [21, Ch. 15, 18]) after H.S. Shapiro made a detailed study [33] reviving methods from E. Fischer’s 1917 paper [16]. The names of H. Weyl, V. Bargmann, and V. A. Fock have also been attached to this inner product.

References

  1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)

    Google Scholar 

  2. Ahlfors, L.V.: Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1978). An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics

  3. Allcock, D., Carlson, J.A., Toledo, D.: Hyperbolic geometry and moduli of real cubic surfaces. Ann. Sci. Éc. Norm. Supér. (4) 43(1), 69–115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azais, J.-M., Wschebor, M.: Level Sets and Extrema of Random Processes and Fields. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  5. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York, (1998). With a foreword by Richard M. Karp

  6. Bürgisser, P., Lerario, A.: Probabilistic Schubert calculus. J. Reine Angew. Math. (Crelle’s Journal) (2018) (published online). https://doi.org/10.1515/crelle-2018-0009

  7. Cayley, A.: A memoir on cubic surfaces. Philos. Trans. R. Soc. Lond. Ser. I(159), 231–326 (1869)

    MATH  Google Scholar 

  8. Debarre, O., Manivel, L.: Sur la variété des espaces linéaires contenus dans une intersection complète. Math. Ann. 312(3), 549–574 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolgachev, I.V.: Classical Algebraic Geometry. Cambridge University Press, Cambridge (2012). A modern view

    Book  MATH  Google Scholar 

  10. Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. Am. Math. Soc. (N.S.) 32(1), 1–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edelman, A., Kostlan, E., Shub, M.: How many eigenvalues of a random matrix are real? J. Am. Math. Soc. 7(1), 247–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eisenbud, D., Harris, J.: 3264 and All That: A Second Course in Algebraic Geometry. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  13. Eremenko, A., Gabrielov, A.: Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry. Ann. Math. (2) 155(1), 105–129 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Finashin, S., Kharlamov, V.: Abundance of real lines on real projective hypersurfaces. Int. Math. Res. Not. IMRN 16, 3639–3646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Finashin, S., Kharlamov, V.: Abundance of 3-planes on real projective hypersurfaces. Arnold Math. J. 1(2), 171–199 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fischer, E.: Über die Differentiationsprozesse der Algebra. J. Math. 148, 1–17 (1917)

    MATH  Google Scholar 

  17. Fyodorov, Y.V., Lerario, A., Lundberg, E.: On the number of connected components of random algebraic hypersurfaces. J. Geom. Phys. 95, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goodman, N.R.: Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). Ann. Math. Stat. 34, 152–177 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grünberg, D.B., Moree, P.: Sequences of enumerative geometry: congruences and asymptotics. Exp. Math. 17(4), 409–426 (2008). With an appendix by Don Zagier

    Article  MathSciNet  MATH  Google Scholar 

  20. Howard, R.: The kinematic formula in Riemannian homogeneous spaces. Mem. Am. Math. Soc. 106(509), vi+69 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Khavinson, D., Lundberg, E.: Linear Holomorphic Partial Differential Equations and Classical Potential Theory, Mathematical Surveys and Monographs, vol. 232. American Mathematical Society, Providence, RI (2018)

    Book  MATH  Google Scholar 

  22. Kostlan, E.: On the distribution of roots of random polynomials. In: From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), pp. 419–431. Springer, New York (1993)

  23. Kostlan, E.: On the expected number of real roots of a system of random polynomial equations. In: Foundations of Computational Mathematics (Hong Kong, 2000), pp. 149–188. World Sci. Publ., River Edge (2002)

  24. Kozlov, S.E.: Geometry of real Grassmannian manifolds. I, II, III. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 246(Geom. i Topol. 2), 84–107, 108–129, 197–198 (1997)

  25. Mukhin, E., Tarasov, V., Varchenko, A.: The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz. Ann. Math. (2) 170(2), 863–881 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Newman, D.J., Shapiro, H.S.: Certain Hilbert spaces of entire functions. Bull. Am. Math. Soc. 72, 971–977 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nicolaescu, L.I.: A stochastic Gauss–Bonnet–Chern formula. Probab. Theory Relat. Fields 165(1–2), 235–265 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Okonek, C., Teleman, A.: Intrinsic signs and lower bounds in real algebraic geometry. J. Reine Angew. Math. 688, 219–241 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  30. Scarowsky, I.: Quadratic forms in normal variables. M.Sc. Thesis. McGill University (1973)

  31. Schläfli, L.: On the distribution of surfaces of the third order into species, in reference to the absence or presence of singular points, and the reality of their lines. Philos. Trans. R. Soc. Lond. 153, 193–241 (1863)

    Article  Google Scholar 

  32. Segre, B.: The Non-singular Cubic Surfaces. Oxford University Press, Oxford (1942)

    MATH  Google Scholar 

  33. Shapiro, H.S.: An algebraic theorem of E. Fischer, and the holomorphic Goursat problem. Bull. Lond. Math. Soc. 21(6), 513–537 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shub, M., Smale, S.: Complexity of Bezout’s theorem. II. Volumes and probabilities. In: Computational Algebraic Geometry (Nice, 1992), Progr. Math., vol. 109, pp. 267–285. Birkhäuser, Boston (1993)

  35. Shub, M., Smale, S.: Complexity of Bézout’s theorem. I. Geometric aspects. J. Am. Math. Soc. 6(2), 459–501 (1993)

    MATH  Google Scholar 

  36. Shub, M., Smale, S.: Complexity of Bezout’s theorem. III. Condition number and packing. J. Complex. 9(1), 4–14 (1993). Festschrift for Joseph F. Traub, Part I

    Article  MathSciNet  MATH  Google Scholar 

  37. Sottile, F.: Enumerative geometry for the real Grassmannian of lines in projective space. Duke Math. J. 87(1), 59–85 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sottile, F.: Pieri’s formula via explicit rational equivalence. Can. J. Math. 49(6), 1281–1298 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sottile, F.: Enumerative real algebraic geometry. In: Algorithmic and quantitative real algebraic geometry (Piscataway, NJ, 2001), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 60, pp. 139–179. American Mathematical Society, Providence (2003)

  40. Sottile, F.: Real Solutions to Equations from Geometry, University Lecture Series, vol. 57. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  41. Tao, T., Van, V.: A central limit theorem for the determinant of a Wigner matrix. Adv. Math. 231(1), 74–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Turán, P.: On a problem in the theory of determinants. Acta Math. Sin. 5, 411–423 (1955)

    MathSciNet  MATH  Google Scholar 

  43. Vakil, R.: Schubert induction. Ann. Math. (2) 164(2), 489–512 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The question (1) motivating this paper was posed to the second author by F. Sottile. This paper originated during the stay of the authors at SISSA (Trieste), supported by Foundation Compositio Mathematica. We are very grateful to the anonymous referee whose careful reading and valuable insights improved the exposition dramatically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Lundberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S., Lerario, A., Lundberg, E. et al. Random fields and the enumerative geometry of lines on real and complex hypersurfaces. Math. Ann. 374, 1773–1810 (2019). https://doi.org/10.1007/s00208-019-01837-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01837-0

Mathematics Subject Classification

Navigation