Skip to main content
Log in

The continuity equation with cusp singularities

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we study a special case of the completion of cusp Kähler–Einstein metric on the regular part by taking the continuity method proposed by La Nave and Tian. The differential geometric and algebro-geometric properties of the noncollapsing limit in the continuity method with cusp singularities will be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102, 429–445 (1990)

    Article  MathSciNet  Google Scholar 

  2. Berman, R.J., Guenancia, H.: Kähler–Einstein metrics on stable varieties and log canonical pairs. Geom. Funct. Anal. 24, 1683–1730 (2014)

    Article  MathSciNet  Google Scholar 

  3. Boucksom, S., Broustet, A., Pacienza, G.: Uniruledness of stable base loci of adjoint linear systems via Mori theory. Math. Z. 275, 499–507 (2013)

    Article  MathSciNet  Google Scholar 

  4. Berndtsson, Bo: An introduction to things \(\overline{\partial }\). In: Analytic and Algebraic Geometry. IAS/PARK CITY Mathematics Series, vol. 17 (2008)

  5. Cheeger, J.: Degeneration of Riemannian Metrics under Ricci Curvature Bounds. Lezioni Fermiane. Scuola Normale Superiore, Pisa (2001)

    MATH  Google Scholar 

  6. Chen, X.X., Donaldson, S., Sun, S.: Kähler–Einstein metric on Fano manifolds, I: approximation of metrics with cone singularities. J. Am. Math. Soc. 28, 183–197 (2014)

    Article  Google Scholar 

  7. Chen, X.X., Donaldson, S., Sun, S.: Kähler–Einstein metric on Fano manifolds, II: limits with cone angle less than \(2\pi \). J. Am. Math. Soc. 28(1), 199–234 (2015)

    Article  Google Scholar 

  8. Chen, X.X., Donaldson, S., Sun, S.: Kähler–Einstein metric on Fano manifolds, III: limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Am. Math. Soc. 28(1), 235–278 (2015)

    Article  Google Scholar 

  9. Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. XXXIII, 507–544 (1980)

    Article  Google Scholar 

  10. Colding, T.H.: Ricci curvature and volume convergence. Ann. Math. 145, 477–501 (1997)

    Article  MathSciNet  Google Scholar 

  11. Colding, T.H., Naber, A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. Math. 176, 1173–1229 (2012)

    Article  MathSciNet  Google Scholar 

  12. Demailly, J.P.: Analytic methods in algebraic geometry

  13. Donaldson, S., Sun, S.: Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math. 213, 63–106 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  Google Scholar 

  15. Guenancia, H.: Kähler Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor. Annales de l’institut Fourier 64(3), 1291–1330 (2014)

    Article  MathSciNet  Google Scholar 

  16. Kawamata, Y., Matsuda, K., Matsuki, K.: An introduction to the minimal model problem. Adv. Stud. Pure Math. 10, 283–360 (1987)

    Article  MathSciNet  Google Scholar 

  17. Kobayashi, R.: Kähler–Einstein metric on an open algebraic manifold. Osaka J. Math. 21, 399–418 (1984)

    MathSciNet  MATH  Google Scholar 

  18. La Nave, G., Tian, G.: A continuity method to construct canonical metrics. Math. Ann. 365, 911–921 (2016)

    Article  MathSciNet  Google Scholar 

  19. La Nave, G., Tian, G., Zhang, Z.L.: Bounding diameter of singular Kähler metric. Am. J. Math. 169(6), 1693–1731 (2017)

    Article  Google Scholar 

  20. Rong, X.C., Zhang, Y.G.: Continuity of extremal transitions and flops for Calabi–Yau manifolds. J. Differ. Geom. 89, 233–269 (2011)

    Article  MathSciNet  Google Scholar 

  21. Song, J.: Riemannian geometry of Kähler–Einstein currents. arXiv:1404.0445

  22. Boucksom, S., Eyssidieux, P., Guedj, V. (eds.) An introduction to Kahler Ricci flow, Lecture Notes in Mathematics, pp. 89–188. Springer International Publishing (2013)

  23. Tian, G.: K-stability and Kähler–Einstein metrics. Commun. Pure Appl. Math. LXVIII, 1085–1156 (2015)

    Article  Google Scholar 

  24. Tian, G., Yau, S.T.: Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Adv. Ser. Math. Phys. 1(1), 574–628 (1987)

    MATH  Google Scholar 

  25. Tian, G., Zhang, Z.L.: Convergence of Kähler Ricci flow on lower dimension algebraic manifold of general type. Int. Math. Res. Not. 2016(21), 6493–6511 (2016)

    Article  Google Scholar 

  26. Yau, S.T.: A general Schwarz lemma for Kähler manifolds. Am. J. Math. 100, 197–208 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Gang Tian for his constant help, support and encouragement. The author is also grateful to the essential comments given by the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Additional information

Communicated by Ngaiming Mok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. The continuity equation with cusp singularities. Math. Ann. 376, 729–764 (2020). https://doi.org/10.1007/s00208-018-1752-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1752-2

Navigation