Skip to main content
Log in

When is the energy of the 1D damped Klein-Gordon equation decaying?

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study time decay of the energy for the one dimensional damped Klein-Gordon equation. We give an explicit necessary and sufficient condition on the continuous damping function \(\gamma \ge 0\) for which the energy

$$\begin{aligned} E(t)=\int _{-\infty }^\infty |u_x|^2+|u|^2+ |u_t|^2 dx \end{aligned}$$

decays, whenever \((u(0), u_t(0))\in H^2(\mathbb R)\times H^1(\mathbb R)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Proposition 1.

  2. Here, we depart from the usual definition, where eigenvalues of infinite multiplicities are considered as part of the essential spectrum. We will see though, that since eigenvalues do not appear in our setup, at least on the important set \(\sigma (\mathcal A)\cap i {\mathbb R}\), this is not consequential.

  3. The constants N and \(\kappa \) have subscript \(\gamma \), however we will remove this in the rest of the presentation.

References

  1. Anantharaman, N., Léautaud, M.: Sharp polynomial decay rates for the damped wave equation on the torus. Anal. PDE 7(1), 159–214 (2014). (With an appendix by Stéphane Nonnenmacher)

    Article  MathSciNet  Google Scholar 

  2. Bardos, C., Lebeau, G., Rauch, J.: Un exemple dutilisation des notions de propagation pour le contrôle et la stabilisation de problemes hyperboliques. Rend. Sem. Mat. Univ. Politec. Torino pp. 11–31 (1988)

  3. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    Article  MathSciNet  Google Scholar 

  4. Batty, C., Borichev, A., Tomilov, Y.: \(L^p\)-tauberian theorems and \(L^p\)-rates for energy decay. J. Functional Anal. 270(3), 1153–1201 (2016)

    Article  MathSciNet  Google Scholar 

  5. Burq, N., Hitrik, M.: Energy decay for damped wave equations on partially rectangular domains. Math. Res. Lett. 14(1), 35–47 (2007)

    Article  MathSciNet  Google Scholar 

  6. Burq, N., Joly, R.: Exponential decay for the damped wave equation in unbounded domains. Commun. Contemp. Math. 18(06), 1650012 (2016)

    Article  MathSciNet  Google Scholar 

  7. Gearhart, L.: Spectral theory for contraction semigroups on hilbert space. Trans. Am. Math. Soc. 236, 385–394 (1978)

    Article  MathSciNet  Google Scholar 

  8. Gesztesy, F., Jones, C.K.R.T., Latushkin, Y., Stanislavova, M.: A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations. Indiana Univ. Math. J. 49(1), 221–243 (2000). https://doi.org/10.1512/iumj.2000.49.1838

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, F.: Characteristic conditions for exponential stability of linear dynamical systems in hilbert spaces. Ann. Differ. Equ. 1(1), 43–56 (1985)

    MathSciNet  MATH  Google Scholar 

  10. Latushkin, Y., Shvydkoy, R.: Hyperbolicity of semigroups and Fourier multipliers. In: Borichev, A.A., Nikolski, N.K. (eds.) Systems, Approximation, Singular Integral Operators, and Related Topics. Operator Theory: Advances and Applications, vol. 129, pp. 341–363. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  11. Pazy, A.: Semigroups of linear operators and applications to partial differential equations, applied mathematical sciences, vol. 44. Springer-Verlag, New York (1983)

    MATH  Google Scholar 

  12. Phung, K.: Polynomial decay rate for the dissipative wave equation. J. Differ. Equ. 240(1), 92–124 (2007)

    Article  MathSciNet  Google Scholar 

  13. Prüss, J.: On the spectrum of \(c_0\)-semigroups. Trans. Am. Amer. Math. Soc. 284(2), 847–857 (1984)

    Article  Google Scholar 

  14. Rauch, J., Taylor, M., Phillips, R.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24(1), 79–86 (1974)

    Article  MathSciNet  Google Scholar 

  15. Stahn, R.: Optimal decay rate for the wave equation on a square with constant damping on a strip. Zeitschrift für angewandte Mathematik und Physik 68(2), 36 (2017)

    Article  MathSciNet  Google Scholar 

  16. Wunsch, Jared: Periodic damping gives polynomial energy decay. Math. Res. Lett. 24, 519–528 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Stanislavova.

Additional information

Communicated by Loukas Grafakos.

Stanislavova is partially supported by NSF-DMS, Applied Mathematics program, under Grant # 1516245.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhi, S., Stanislavova, M. When is the energy of the 1D damped Klein-Gordon equation decaying?. Math. Ann. 372, 1459–1479 (2018). https://doi.org/10.1007/s00208-018-1725-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1725-5

Mathematics Subject Classification

Navigation