Skip to main content
Log in

The Neumann problem for higher order elliptic equations with symmetric coefficients

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we establish well posedness of the Neumann problem with boundary data in \(L^2\) or the Sobolev space \(\dot{W}^2_{-1}\), in the half space, for linear elliptic differential operators with coefficients that are constant in the vertical direction and in addition are self adjoint. This generalizes the well known well posedness result of the second order case and is based on a higher order and one sided version of the classic Rellich identity, and is the first known well posedness result for an elliptic divergence form higher order operator with rough variable coefficients and boundary data in a Lebesgue or Sobolev space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane. I. Commun. Pure Appl. Math 10, 179–239 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfonseca, M.A., Auscher, P., Axelsson, A., Hofmann, S., Kim, S.: Analyticity of layer potentials and \(L^2\) solvability of boundary value problems for divergence form elliptic equations with complex \(L^\infty \) coefficients. Adv. Math. 226(5), 4533–4606 (2011). https://doi.org/10.1016/j.aim.2010.12.014

    Article  MathSciNet  MATH  Google Scholar 

  3. Auscher, P., Axelsson, A.: Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I. Invent. Math. 184(1), 47–115 (2011). https://doi.org/10.1007/s00222-010-0285-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Auscher, P., Axelsson, A., Hofmann, S.: Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems. J. Funct. Anal. 255(2), 374–448 (2008). https://doi.org/10.1016/j.jfa.2008.02.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Auscher, P., Axelsson, A., McIntosh, A.: Solvability of elliptic systems with square integrable boundary data. Ark. Mat. 48(2), 253–287 (2010). https://doi.org/10.1007/s11512-009-0108-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.: The solution of the Kato square root problem for second order elliptic operators on \({\mathbb{R}}^n\). Ann. Math. (2) 156(2), 633–654 (2002). https://doi.org/10.2307/3597201

  7. Auscher, P., Hofmann, S., McIntosh, A., Tchamitchian, P.: The Kato square root problem for higher order elliptic operators and systems on \(\mathbb{R}^n\). J. Evol. Equ. 1(4), 361–385 (2001). https://doi.org/10.1007/PL00001377. (Dedicated to the memory of Tosio Kato)

  8. Auscher, P., Mourgoglou, M.: Boundary layers, Rellich estimates and extrapolation of solvability for elliptic systems. Proc. Lond. Math. Soc. (3) 109(2), 446–482 (2014). https://doi.org/10.1112/plms/pdu008

  9. Auscher, P., Qafsaoui, M.: Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form. J. Funct. Anal. 177(2), 310–364 (2000). https://doi.org/10.1006/jfan.2000.3643

    Article  MathSciNet  MATH  Google Scholar 

  10. Auscher, P., Rosén, A.: Weighted maximal regularity estimates and solvability of nonsmooth elliptic systems. II. Anal. PDE 5(5), 983–1061 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Auscher, P., Stahlhut, S.: Functional calculus for first order systems of Dirac type and boundary value problems, vol. 144. Societe Mathematique De France, Paris, pp. vii+164. ISBN: 978-2-85629-829-9 (2016)

  12. Barton, A.: Layer potentials for general linear elliptic systems. Electron. J. Differ. Equ. (To appear)

  13. Barton, A.: Perturbation of well-posedness for higher-order elliptic systems with rough coefficients (2017). arXiv:1604.00062v2 [math.AP]

  14. Barton, A.: Elliptic partial differential equations with almost-real coefficients. Mem. Am. Math. Soc. 223(1051), vi+108 (2013). https://doi.org/10.1090/S0065-9266-2012-00677-0

  15. Barton, A.: Gradient estimates and the fundamental solution for higher-order elliptic systems with rough coefficients. Manuscr. Math. 151(3–4), 375–418 (2016). https://doi.org/10.1007/s00229-016-0839-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Barton, A., Hofmann, S., Mayboroda, S.: Nontangential estimates and the Neumann problem for higher order elliptic equations. (In preparation)

  17. Barton, A., Hofmann, S., Mayboroda, S.: Square function estimates on layer potentials for higher-order elliptic equations. Math. Nachr. 290(16), 2459–2511 (2017). http://doi.org/10.1002/mana.201600116

  18. Barton, A., Hofmann, S., Mayboroda, S.: Bounds on layer potentials with rough inputs for higher order elliptic equations (2017). arXiv:1703.06847 [math.AP]

  19. Barton, A., Hofmann, S., Mayboroda, S.: Dirichlet and Neumann boundary values of solutions to higher order elliptic equations (2017). arXiv:1703.06963 [math.AP]

  20. Barton, A., Mayboroda, S.: The Dirichlet problem for higher order equations in composition form. J. Funct. Anal. 265(1), 49–107 (2013). https://doi.org/10.1016/j.jfa.2013.03.013

    Article  MathSciNet  MATH  Google Scholar 

  21. Barton, A., Mayboroda, S.: Higher-order elliptic equations in non-smooth domains: a partial survey. In: Pereyra, M.C., Marcantognini, S., Stokolos, A.M., Urbina, W. (eds.) Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1). Celebrating Cora Sadosky’s life, Association for Women in Mathematics Series, vol. 4, pp. xvi+371. Springer, Cham (2016)

  22. Barton, A., Mayboroda, S.: Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces. Mem. Am. Math. Soc. 243(1149), v+110 (2016). https://doi.org/10.1090/memo/1149

  23. Campanato, S.: Sistemi ellittici in forma divergenza. Regolarità all’interno. Quaderni. [Publications]. Scuola Normale Superiore Pisa, Pisa (1980)

  24. Cohen, J., Gosselin, J.: The Dirichlet problem for the biharmonic equation in a \(C^{1}\) domain in the plane. Indiana Univ. Math. J. 32(5), 635–685 (1983). https://doi.org/10.1512/iumj.1983.32.32044

    Article  MathSciNet  MATH  Google Scholar 

  25. Cohen, J., Gosselin, J.: Adjoint boundary value problems for the biharmonic equation on \(C^1\) domains in the plane. Ark. Mat. 23(2), 217–240 (1985). https://doi.org/10.1007/BF02384427

    Article  MathSciNet  MATH  Google Scholar 

  26. Dahlberg, B.E.J.: Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain. Studia Math. 67(3), 297–314 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dahlberg, B.E.J., Jerison, D.S., Kenig, C.E.: Area integral estimates for elliptic differential operators with nonsmooth coefficients. Ark. Mat. 22(1), 97–108 (1984). https://doi.org/10.1007/BF02384374

    Article  MathSciNet  MATH  Google Scholar 

  28. Dahlberg, B.E.J., Kenig, C.E.: Hardy spaces and the Neumann problem in \(L^p\) for Laplace’s equation in Lipschitz domains. Ann. Math. (2) 125(3), 437–465 (1987). https://doi.org/10.2307/1971407

  29. Dahlberg, B.E.J., Kenig, C.E., Pipher, J., Verchota, G.C.: Area integral estimates for higher order elliptic equations and systems. Ann. Inst. Fourier (Grenoble) 47(5), 1425–1461 (1997). http://www.numdam.org/item?id=AIF_1997__47_5_1425_0

  30. Dahlberg, B.E.J., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the biharmonic equation in a Lipschitz domain. Ann. Inst. Fourier (Grenoble) 36(3), 109–135 (1986). http://www.numdam.org/item?id=AIF_1986__36_3_109_0

  31. Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev–Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159(2), 323–368 (1998). https://doi.org/10.1006/jfan.1998.3316

    Article  MathSciNet  MATH  Google Scholar 

  32. Hofmann, S., Kenig, C., Mayboroda, S., Pipher, J.: The regularity problem for second order elliptic operators with complex-valued bounded measurable coefficients. Math. Ann. 361(3–4), 863–907 (2015). https://doi.org/10.1007/s00208-014-1087-6

    Article  MathSciNet  MATH  Google Scholar 

  33. Hofmann, S., Kenig, C., Mayboroda, S., Pipher, J.: Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators. J. Am. Math. Soc. 28(2), 483–529 (2015). https://doi.org/10.1090/S0894-0347-2014-00805-5

    Article  MathSciNet  MATH  Google Scholar 

  34. Hofmann, S., Mayboroda, S., Mourgoglou, M.: Layer potentials and boundary value problems for elliptic equations with complex \(L^\infty \) coefficients satisfying the small Carleson measure norm condition. Adv. Math. 270, 480–564 (2015). https://doi.org/10.1016/j.aim.2014.11.009

    Article  MathSciNet  MATH  Google Scholar 

  35. Hofmann, S., Mitrea, M., Morris, A.J.: The method of layer potentials in \(L^p\) and endpoint spaces for elliptic operators with \(L^\infty \) coefficients. Proc. Lond. Math. Soc. (3) 111(3), 681–716 (2015). https://doi.org/10.1112/plms/pdv035

  36. Jawerth, B.: Some observations on Besov and Lizorkin–Triebel spaces. Math. Scand. 40(1), 94–104 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4(2), 203–207 (1981). https://doi.org/10.1090/S0273-0979-1981-14884-9

  38. Kenig, C.E.: Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 83. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1994)

  39. Kenig, C.E., Pipher, J.: The Neumann problem for elliptic equations with nonsmooth coefficients. Invent. Math. 113(3), 447–509 (1993). https://doi.org/10.1007/BF01244315

    Article  MathSciNet  MATH  Google Scholar 

  40. Kenig, C.E., Pipher, J.: The Neumann problem for elliptic equations with nonsmooth coefficients. II. Duke Math. J. 81(1), 227–250 (1996) (1995). https://doi.org/10.1215/S0012-7094-95-08112-5. (A celebration of John F. Nash, Jr)

  41. Kenig, C.E., Rule, D.J.: The regularity and Neumann problem for non-symmetric elliptic operators. Trans. Am. Math. Soc. 361(1), 125–160 (2009). https://doi.org/10.1090/S0002-9947-08-04610-2

    Article  MathSciNet  MATH  Google Scholar 

  42. Lizorkin, P.I.: Boundary properties of functions from “weight” classes. Soviet Math. Dokl. 1, 589–593 (1960)

    MathSciNet  MATH  Google Scholar 

  43. Mayboroda, S.: The Poisson problem on Lipschitz domains. ProQuest LLC, Ann Arbor, MI (2005). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3242749. Thesis (Ph.D.)–University of Missouri-Columbia

  44. Mayboroda, S., Mitrea, M.: Sharp estimates for Green potentials on non-smooth domains. Math. Res. Lett. 11(4), 481–492 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients. J. Anal. Math. 110, 167–239 (2010). https://doi.org/10.1007/s11854-010-0005-4

    Article  MathSciNet  MATH  Google Scholar 

  46. Mitrea, I., Mitrea, M.: Boundary value problems and integral operators for the bi-Laplacian in non-smooth domains. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 24(3), 329–383 (2013). https://doi.org/10.4171/RLM/657

  47. Mitrea, I., Mitrea, M.: Multi-Layer Potentials and Boundary Problems for Higher-Order Elliptic Systems in Lipschitz Domains, Lecture Notes in Mathematics, vol. 2063. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  48. Nadai, A.: Theory of Flow and Fracture of Solids, vol. II. McGraw-Hill, New York (1963)

    Google Scholar 

  49. Pipher, J., Verchota, G.C.: Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators. Ann. Math. (2) 142(1), 1–38 (1995). https://doi.org/10.2307/2118610

  50. Rosén, A.: Layer potentials beyond singular integral operators. Publ. Mat. 57(2), 429–454 (2013). https://doi.org/10.5565/PUBLMAT_57213_08

    Article  MathSciNet  MATH  Google Scholar 

  51. Shen, Z.: The \(L^p\) boundary value problems on Lipschitz domains. Adv. Math. 216(1), 212–254 (2007). https://doi.org/10.1016/j.aim.2007.05.017

    Article  MathSciNet  MATH  Google Scholar 

  52. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59(3), 572–611 (1984). https://doi.org/10.1016/0022-1236(84)90066-1

    Article  MathSciNet  MATH  Google Scholar 

  53. Verchota, G.: The Dirichlet problem for the polyharmonic equation in Lipschitz domains. Indiana Univ. Math. J. 39(3), 671–702 (1990). https://doi.org/10.1512/iumj.1990.39.39034

    Article  MathSciNet  MATH  Google Scholar 

  54. Verchota, G.C.: Potentials for the Dirichlet problem in Lipschitz domains. In: Potential theory—ICPT 94 (Kouty, 1994), pp. 167–187. de Gruyter, Berlin (1996)

  55. Verchota, G.C.: The biharmonic Neumann problem in Lipschitz domains. Acta Math. 194(2), 217–279 (2005). https://doi.org/10.1007/BF02393222

    Article  MathSciNet  MATH  Google Scholar 

  56. Zanger, D.Z.: The inhomogeneous Neumann problem in Lipschitz domains. Commun. Partial Differ. Equ. 25(9–10), 1771–1808 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the American Institute of Mathematics for hosting the SQuaRE workshop on “Singular integral operators and solvability of boundary problems for elliptic equations with rough coefficients,” and the Mathematical Sciences Research Institute for hosting a Program on Harmonic Analysis, at which many of the results and techniques of this paper were discussed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Barton.

Additional information

Communicated by Loukas Grafakos.

Steve Hofmann is partially supported by the NSF Grant DMS-1361701. Svitlana Mayboroda is partially supported by the Simons Foundation, the NSF CAREER Award DMS 1056004, the NSF INSPIRE Award DMS 1344235, and the NSF Materials Research Science and Engineering Center Seed Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, A., Hofmann, S. & Mayboroda, S. The Neumann problem for higher order elliptic equations with symmetric coefficients. Math. Ann. 371, 297–336 (2018). https://doi.org/10.1007/s00208-017-1606-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1606-3

Mathematics Subject Classification

Navigation