Skip to main content
Log in

Small volume of balls, large volume entropy and the Margulis constant

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In his seminal work about bounded cohomology, Gromov showed that, under some topological conditions, every closed Riemannian manifold of small volume has large volume entropy. In this article, we strengthen some aspects of this result using an alternative approach. More precisely, we prove that, under some similar, yet different, topological assumptions, every closed Riemannian manifold whose volume of balls is small has large volume entropy. Along the proof of this result, we establish a new systolic inequality involving the commutator systole and a new curvature-free estimate relating the filling radius to the Margulis constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko, I.: Asymptotic invariants of smooth manifolds. Russ. Acad. Sci. Izv. Math. 41, 1–38 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Besson, G., Courtois, G., Gallot, S.: Uniform growth of groups acting on Cartan–Hadamard spaces. J. Eur. Math. Soc. 13, 1343–1371 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besson, G., Courtois, G., Gallot, S.: Un lemme de Margulis sans courbure et ses applications. Preprint available at https://www-fourier.ujf-grenoble.fr/sites/default/files/REF_595.pdf

  4. Burghelea, D.: The free loop space. I. Algebraic topology. Contemp. Math. 96, 59–85 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Greene, R., Petersen, P.: Little topology, big volume. Duke Math. 67(2), 273–290 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gromov, M.: Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math. 56, 5–99 (1982)

    MathSciNet  MATH  Google Scholar 

  7. Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–147 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gromov, M. : Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory. Math. Sci. Res. Inst. Publ., vol. 8, pp. 75–264. Springer, New York (1987)

  9. Guth, L.: Volumes of balls in large Riemannian manifolds. Ann. Math. (2) 173(1), 51–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen, V.L.: On the fundamental group of a mapping space. An example. Compos. Math. 28(1), 33–36 (1974)

    MathSciNet  MATH  Google Scholar 

  11. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  12. Sabourau, S.: Filling radius and short closed geodesics of the 2-sphere. Bull. Soc. Math. Fr. 132(1), 105–136 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sabourau, S.: Asymptotic bounds for separating systoles on surfaces. Comment. Math. Helv. 83(1), 35–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Sabourau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabourau, S. Small volume of balls, large volume entropy and the Margulis constant. Math. Ann. 369, 1557–1571 (2017). https://doi.org/10.1007/s00208-016-1502-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1502-2

Mathematics Subject Classification

Navigation