Skip to main content
Log in

Pointwise equidistribution with an error rate and with respect to unbounded functions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Consider \(G=\mathrm{SL}_{ d }({\mathbb {R}})\) and \( \Gamma =\mathrm{SL}_{ d }({\mathbb {Z}})\). It was recently shown by the second-named author (Shi, Pointwise equidistribution for one parameter diagonalizable group action on homogeneous space (preprint), arXiv:1405.2067, 2014) that for some diagonal subgroups \(\{g_t\}{\subset } G\) and unipotent subgroups \(U{\subset } G\), \(g_t\)-trajectories of almost all points on all U-orbits on \(G/\Gamma \) are equidistributed with respect to continuous compactly supported functions \(\varphi \) on \(G/\Gamma \). In this paper we strengthen this result in two directions: by exhibiting an error rate of equidistribution when \(\varphi \) is smooth and compactly supported, and by proving equidistribution with respect to certain unbounded functions, namely Siegel transforms of Riemann integrable functions on \(\mathbb {R}^d\). For the first part we use a method based on effective double equidistribution of \(g_t\)-translates of U-orbits, which generalizes the main result of Kleinbock and Margulis (On effective equidistribution of expanding translates of certain orbits in the space of lattices, Number theory, analysis and geometry 385–396, 2012). The second part is based on Schmidt’s results on counting of lattice points. Number-theoretic consequences involving spiraling of lattice approximations, extending recent work of Athreya et al. (J Lond Math Soc 91(2):383–404, 2015), are derived using the equidistribution result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athreya, J.S., Ghosh, A., Tseng, J.: Spiraling of approximations and spherical averages of Siegel transforms. J. Lond. Math. Soc. 91(2), 383–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Athreya, J.S., Ghosh, A., Tseng, J.: Spherical averages of Siegel transforms for higher rank diagonal actions and applications. arXiv:1407.3573 (preprint) (2014)

  3. Athreya, J.S., Parrish, A., Tseng, J.: Ergodic theory and diophantine approximation for linear forms and translation surfaces. arXiv:1401.4148 (preprint) (2014)

  4. Betke, U., Henk, M., Wills, J.M.: Successive-minima type inequalities. Disc. Comp. Geom. 9, 165–175 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Björklund, M., Einsiedler, M., Gorodnik, A.: In preparation (2016)

  6. Cassels, J.W.S.: Some metrical theorems in diophantine approximation III. Proc. Camb. Phil. Soc. 46, 219–225 (1950)

    Article  MATH  Google Scholar 

  7. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Corrected reprint of the 1971 edition. Classics in Mathematics. Springer, Berlin (1997)

  8. Eskin, A., Margulis, G.A., Mozes, S.: Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture. Ann. Math. 147, 93–141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaposhkin, V.P.: On the dependence of the convergence rate in the strong law of large numbers for stationary processes on the rate of decay of the correlation function. Theory Probab. Appl. 26(4), 706–720 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kachurovskii, A.G.: The rate of convergence in ergodic theorems. Russ. Math. Surv. 51(4), 653–703 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kleinbock, D.Y.: Flows on homogeneous spaces and Diophantine properties of matrices. Duke Math. J. 95, 107–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kleinbock, D.Y., Margulis, G.A.: Bounded orbits of nonquasiunipotent flows on homogeneous spaces. In: Bunimovich, L.A., Gurevich, B.M., Pesin, Y.B. (eds.) Sinai’s Moscow Seminar on Dynamical Systems. American Mathematical Society Translations: Series 2, vol. 171, pp. 141–172. American Mathematical Society, Providence (1996)

    Chapter  Google Scholar 

  13. Kleinbock, D.Y., Margulis, G.A.: On effective equidistribution of expanding translates of certain orbits in the space of lattices. In: Goldfeld, D., Jorgenson, J., Jones, P., Ramakrishnan, D., Ribet, K., Tate, J.T. (eds.) Number Theory. Analysis and Geometry, pp. 385–396. Springer, New York (2012)

  14. Kleinbock, D.Y., Shah, N.A., Starkov, A.: Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory. In: Hasselblatt, B., Katok, A. (eds.) Handbook on Dynamical Systems, vol. 1A. Elsevier, North Holland (2002)

    Google Scholar 

  15. Kleinbock, D.Y., Weiss, B.: Dirichlet’s theorem on diophantine approximation and homogeneous flows. J. Mod. Dyn. 4, 43–62 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Konstantoulas, I.: Effective decay of multiple correlations in semidirect product actions. J. Mod. Dyn. (to appear)

  17. Marklof, J., Strömbergsson, A.: Free path lengths in quasicrystals. Commun. Math. Phys. 330, 723–755 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schmidt, W.M.: A metrical theorem in diophantine approximation. Can. J. Math. 12, 619–631 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schmidt, W.M.: A metrical theorem in geometry of numbers. Trans. Am. Math. Soc. 95, 516–529 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shah, N., Weiss, B.: On actions of epimorphic subgroups on homogeneous spaces. Ergod. Theory Dyn. Syst. 20(2), 567–592 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shi, R.: Pointwise equidistribution for one parameter diagonalizable group action on homogeneous space. arXiv:1405.2067 (preprint) (2014)

  22. Siegel, C.L.: A mean value theorem in geometry of numbers. Ann. Math. 46, 340–347 (1945)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The support of Grants NSFC (11201388), NSFC (11271278), ERC starter Grant DLGAPS 279893, NSF DMS-1101320, NSF 0932078 000 and BSF 2010428 is gratefully acknowledged. We would like to thank Manfred Einsiedler for a discussion of effective double equidistribution, Marc Pollicott for pointing us to references [9, 10], and MSRI for its hospitality during Spring 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronggang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleinbock, D., Shi, R. & Weiss, B. Pointwise equidistribution with an error rate and with respect to unbounded functions. Math. Ann. 367, 857–879 (2017). https://doi.org/10.1007/s00208-016-1404-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1404-3

Mathematics Subject Classification

Navigation