Skip to main content
Log in

Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

“Local coefficients bring an extra level of complication that one tries to avoid whenever possible.”

— Allen Hatcher, Algebraic Topology

Abstract

In this article we examine under which conditions symplectic homology with local coefficients of a unit disk bundle \(D^*M\) vanishes. For instance this is the case if the Hurewicz map \(\pi _2(M)\rightarrow H_2(M;{\mathbb {Z}})\) is nonzero. As an application we prove finiteness of the \(\pi _1\)-sensitive Hofer-Zehnder capacity of unit disk bundles in these cases. We also prove uniruledness for such cotangent bundles. Moreover, we find an obstruction to the existence of H-space structures on general topological spaces, formulated in terms of local systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbondandolo, A., Schwarz, M.: On the Floer homology of cotangent bundles. Commun. Pure Appl. Math. 59(2), 254–316 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbondandolo, A., Schwarz, M.: Corrigendum: on the Floer homology of cotangent bundles. Commun. Pure Appl. Math. 67(4), 670–691 (2014)

    Article  MATH  Google Scholar 

  3. Abouzaid, M.: Symplectic cohomology and Viterbo’s theorem. In: Free Loop Spaces in Geometry and Topology, vol. 24 of IRMA Lectures in Mathematics and Theoretical Physics. EMS Publishing House (2015)

  4. Albers, P., Frauenfelder, U., van Koert, O., Paternain, G.P.: Contact geometry of the restricted three-body problem. Commun. Pure Appl. Math. 65(2), 229–263 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bangert, V.: Existence of a complex line in tame almost complex tori. Duke Math. J. 94(1), 29–40 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biolley, A.-L.: Cohomologie de Floer, hyperbolicités symplectique et pseudocomplexe [Floer cohomology, symplectic and pseudocomplex hyperbolicities]. PhD thesis, École Polytechnique (2003). Available online at https://tel.archives-ouvertes.fr/pastel-00000702/document

  7. Biolley, A.-L.: Floer homology, symplectic and complex hyperbolicities (2004). arXiv:math/0404551

  8. Bourgeois, F., Eliashberg, Y., Hofer, H., Wysocki, K., Zehnder, E.: Compactness results in symplectic field theory. Geom. Topol. 7, 799–888 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgeois, F., Oancea, A.: An exact sequence for contact- and symplectic homology. Invent. Math. 175(3), 611–680 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cartan, H., Leray, J.: Relations entre anneaux d’homologie et groupes de Poincaré. In: Topologie algébrique, Colloques Internationaux du Centre National de la Recherche Scientifique, no. 12, pp. 83–85. Centre de la Recherche Scientifique, Paris (1949)

  11. Cieliebak, K.: Handle attaching in symplectic homology and the chord conjecture. J. Eur. Math. Soc. (JEMS) 4(2), 115–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds, vol. 59 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2012)

  13. Cieliebak, K., Hofer, H., Latschev, J., Schlenk, F.: Quantitative symplectic geometry. In: Dynamics, Ergodic Theory, and Geometry, vol. 54 of Math. Sci. Res. Inst. Publ., pp. 1–44. Cambridge Univ. Press, Cambridge (2007)

  14. Eilenberg, S., Mac Lane, S.: On the groups of \(H(\Pi, n)\). I. Ann. Math. 2(58), 55–106 (1953)

    Article  Google Scholar 

  15. Greenberg, M.J., Harper, J.R.: Algebraic topology. A first course, vol. 58 of Mathematics Lecture Note Series. Benjamin/Cummings Publishing Co. Inc., Reading, Mass. (1981)

  16. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  17. Hofer, H., Zehnder, E.: A New Capacity for Symplectic Manifolds. Analysis. et cetera, pp. 405–427. Academic Press, Boston (1990)

    Google Scholar 

  18. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (1994)

    Book  Google Scholar 

  19. Hopf, H.: Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen. Ann. Math. 2(42), 22–52 (1941)

    Article  MATH  Google Scholar 

  20. Hopf, H.: Fundamentalgruppe und zweite Bettische Gruppe. Comment. Math. Helv. 14, 257–309 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  21. Irie, K.: Hofer-Zehnder capacity of unit disk cotangent bundles and the loop product. J. Eur. Math. Soc. (JEMS) 16(11), 2477–2497 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kang, J.: Symplectic homology of displaceable Liouville domains and leafwise intersection points. Geom. Dedicata 170, 135–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Labourie, F.: Lectures on Representations of Surface Groups, vol. 17 of Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich (2013)

  24. Lang, S.: Introduction to Complex Hyperbolic Spaces. Springer-Verlag, New York (1987)

    Book  MATH  Google Scholar 

  25. Liu, C., Wang, Q.: Symmetrical symplectic capacity with applications. Discrete Contin. Dyn. Syst. 32(6), 2253–2270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Massot, P., Niederkrüger, K., Wendl, C.: Weak and strong fillability of higher dimensional contact manifolds. Invent. Math. 192(2), 287–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. McCleary, J.: A User’s Guide to Spectral Sequences, vol. 58 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2001)

  28. Ritter, A.: Novikov-symplectic cohomology and exact Lagrangian embeddings. Geom. Topol. 13(2), 943–978 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ritter, A.F.: Deformations of symplectic cohomology and exact Lagrangians in ALE spaces. Geom. Funct. Anal. 20(3), 779–816 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ritter, A.F.: Topological quantum field theory structure on symplectic cohomology. J. Topol. 6(2), 391–489 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Salamon, D., Weber, J.: Floer homology and the heat flow. Geom. Funct. Anal. 16(5), 1050–1138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Seidel, P.: A remark on the symplectic cohomology of cotangent bundles, after Kragh. Informal note (2010)

  33. Steenrod, N.E.: Homology with local coefficients. Ann. Math. 2(44), 610–627 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  34. Viterbo, C.: Functors and computations in Floer homology with applications. II. Prépublication Orsay 98-15. Available online at http://www.math.ens.fr/~viterbo/FCFH.II.2003.pdf (1998)

  35. Viterbo, C.: Functors and computations in Floer homology with applications. I. Geom. Funct. Anal. 9(5), 985–1033 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Weinstein, A.: On the hypotheses of Rabinowitz’ periodic orbit theorems. J. Differ. Equ. 33(3), 353–358 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The third author wishes to thank Nancy Hingston for inspiring comments, and the College of New Jersey for hospitality during the summer 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Albers.

Additional information

P. Albers partially funded by SFB 878. A. Oancea partially funded by the European Research Council, StG-259118-STEIN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albers, P., Frauenfelder, U. & Oancea, A. Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity. Math. Ann. 367, 1403–1428 (2017). https://doi.org/10.1007/s00208-016-1401-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1401-6

Keywords

Navigation