Skip to main content
Log in

Nonlinear commutators for the fractional p-Laplacian and applications

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove a nonlinear commutator estimate concerning the transfer of derivatives onto testfunctions for the fractional p-Laplacian. This implies that solutions to certain degenerate nonlocal equations are higher differentiable. Also, weakly fractional p-harmonic functions which a priori are less regular than variational solutions are in fact classical. As an application we show that sequences of uniformly bounded \(\frac{n}{s}\)-harmonic maps converge strongly outside at most finitely many points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is true if \(\frac{n}{t_0} \ge 2\), since then \([f]_{W^{t_0,\frac{n}{t_0}}} \le \Vert (-\Delta ) ^{\frac{t_0}{2}} f \Vert _{\frac{n}{t_0}}\). If \(\frac{n}{t_0} < 2\) one has to adapt the estimate, but the results remains true.

References

  1. Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bjorland, C., Caffarelli, L., Figalli, A.: Non-local gradient dependent operators. Adv. Math. 230(4–6), 1859–1894 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blatt, S., Reiter, Ph., Schikorra, A.: Harmonic analysis meets critical knots (stationary points of the moebius energy are smooth). Trans. AMS (2014, accepted)

  4. Bourgain, J., Brézis, H., Mironescu, P.: Another look at sobolev spaces. Optimal control and partial differential equations, pp. 439-455 (2001)

  5. Brasco, L., Lindgren, E.: Higher sobolev regularity for the fractional \(p\)-Laplace equation in the superquadratic case (2015, preprint). arXiv:1508.01039

  6. Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications (2015, preprint). arXiv:1504.08292

  7. Da Lio, F.: Fractional harmonic maps into manifolds in odd dimension \(n {\>} 1\). Calc. Var. Partial Differ. Equ. 48(3–4), 421–445 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Da Lio, F.: Compactness and bubbles analysis for half-harmonic maps into spheres. Ann Inst. Henri Poincaré, Analyse non linèaire 32, 201–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Da Lio, F., Rivière, T.: Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps. Adv. Math. 227(3), 1300–1348 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Da Lio, F., Rivière, T.: Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres. Anal. Partial Differ. Equ. 4(1), 149–190 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Di Castro, A., Kuusi, T., Palatucci, G.: Local behaviour of fractional \(p\)-minimizers (2014, preprint)

  12. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal harnack inequalities. J. Funct. Anal. 267, 1807–1836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grafakos, L.: Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2009)

    Google Scholar 

  15. Iannizzotto, A., Mosconi, S., Squassina, M.: Global hölder regularity for the fractional p-laplacian. arXiv:1411.2956 (2014)

  16. Iwaniec, T.: \(p\)-harmonic tensors and quasiregular mappings. Ann. Math. (2) 136(3), 589–624 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Kuusi, T., Mingione, G., Sire, Y.: A fractional Gehring lemma, with applications to nonlocal equations. Rend. Lincei Mat. Appl. 25, 345–358 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Commun. Math. Phys. 337, 1317–1368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8, 57–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schikorra, A.: Epsilon-regularity for systems involving non-local, antisymmetric operators (2012, preprint)

  22. Schikorra, A.: Regularity of n/2-harmonic maps into spheres. J. Differ. Equ. 252, 1862–1911 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schikorra, A.: Integro-differential harmonic maps into spheres. Commun. Partial Differ Equ. 40(1), 506–539 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  25. Vazquez, J.-L.: The dirichlet problem for the fractional p-laplacian evolution equation (2015, preprint). arXiv:1506.00210

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Schikorra.

Appendix A: Useful tools

Appendix A: Useful tools

The following Lemma is used to restrict the fractional p-Laplacian to smaller sets.

Lemma 8.1

(Localization lemma) Let \(\Omega _1 \Subset \Omega _2 \Subset \Omega _3 \Subset \Omega \subset \mathbb {R}^n\) be open sets so that \(\mathrm{dist\,}(\Omega _1,\Omega _2^c), \mathrm{dist\,}(\Omega _2,\Omega _3^c), \mathrm{dist\,}(\Omega _3,\Omega ^c) > 0\). Let \(s \in (0,1)\), \(p \in [2,\infty )\).

For any \(u \in W^{s,p}(\Omega )\) there exists \(\tilde{u} \in W^{s,p}(\mathbb {R}^n)\) so that

  1. (1)

    \(\tilde{u} - u \equiv const\) in \(\Omega _1\)

  2. (2)

    \(\mathrm{supp\,}\tilde{u} \subset \Omega _2\)

  3. (3)

    \([\tilde{u}]_{W^{s,p}(\mathbb {R}^n)} \precsim \ [u]_{W^{s,p}(\Omega )}\)

  4. (4)

    For any \(t \in (2s-1,s)\),

    $$\begin{aligned} \Vert (-\Delta )^{s}_{p,\Omega _3} \tilde{u}\Vert _{(W^{t,p}_0(\Omega _3))^*} \precsim \Vert (-\Delta )^{s}_{p,\Omega } u\Vert _{(W^{t,p}_0(\Omega ))^*} + [u]_{W^{s,p}(\Omega )}^{p-1}. \end{aligned}$$

The constants are uniform in u and depend only on stp and the sets \(\Omega _1\), \(\Omega _2\), \(\Omega _3\), and \(\Omega \).

Proof

Let \(\Omega _1 \Subset \Omega \), let \(\eta \equiv \eta _{\Omega _1} \in C_c^\infty (\Omega _2)\), \(\eta _{\Omega _1} \equiv 1\) on \(\Omega _1\). We set

$$\begin{aligned} \tilde{u} := \eta _{\Omega _1}(u-(u)_{\Omega _1}). \end{aligned}$$

Clearly \(\tilde{u}\) satisfies property (1) and (2). We have property (3), too:

$$\begin{aligned}{}[\tilde{u}]_{W^{s,p}(\mathbb {R}^n)} \precsim [u]_{W^{s,p}(\Omega )}. \end{aligned}$$

We write

$$\begin{aligned} \tilde{u}(x)-\tilde{u}(y) = \underbrace{\eta (x) (u(x)-u(y))}_{a(x,y)} + \underbrace{(\eta (x)-\eta (y)) (u(y)-(u)_{\Omega _1})}_{b(x,y)}. \end{aligned}$$

Setting

$$\begin{aligned} T(a) := |a|^{p-2} a, \end{aligned}$$

observe that

$$\begin{aligned} |T(a+b) - T(a)| \precsim |b| \left( |a|^{p-2} + |b|^{p-2} \right) . \end{aligned}$$

Also note that

$$\begin{aligned} T(a(x,y)) = \eta ^{p-1}(x) |u(x)-u(y)|^{p-2}(u(x)-u(y)) \end{aligned}$$

We thus have for any \(\varphi \in C_c^\infty (\Omega _3)\),

$$\begin{aligned}&(-\Delta )^{s}_{p,\Omega }\tilde{u}[\varphi ]\\&\quad =\int _{\Omega } \int _{\Omega } \frac{|\tilde{u}(x)-\tilde{u}(y)|^{p-2}(\tilde{u}(x)-\tilde{u}(y))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx\ dy\\&\quad = \int _{\Omega } \int _{\Omega } \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ \eta ^{p-1}(x)\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx\ dy\\&\qquad +\int _{\Omega } \int _{\Omega } \frac{(T(a+b) - T(a))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx\ dy\\&\quad = \int _{\Omega } \int _{\Omega } \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ ( \eta ^{p-1}(x) \varphi (x)- \eta ^{p-1}(y) \varphi (y))}{|x-y|^{n+sp}}\ dx\ dy\\&\qquad -\int _{\Omega } \int _{\Omega } \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ (\eta ^{p-1}(x)-\eta ^{p-1}(y))\varphi (y)}{|x-y|^{n+sp}}\ dx\ dy\\&\qquad +\int _{\Omega } \int _{\Omega } \frac{(T(a+b) - T(a))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx\ dy\\&\quad = (-\Delta )^{s}_{p,\Omega }u[\eta ^{p-1}\ \varphi ]\\&\quad \quad -\int _{\Omega } \int _{\Omega } \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ (\eta ^{p-1}(x)-\eta ^{p-1}(y))\varphi (y)}{|x-y|^{n+sp}}\ dx\ dy\\&\quad \quad +\int _{\Omega } \int _{\Omega } \frac{(T(a+b) - T(a))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx\ dy. \end{aligned}$$

Consequently,

$$\begin{aligned}&| (-\Delta )^{s}_{p,\Omega } \tilde{u}[\varphi ]|\\&\quad \precsim \Vert (-\Delta )^{s}_{p,\Omega }u\Vert _{(W^{t,p}_0(\Omega ))^*}\ [\eta ^{p-1} \varphi ]_{W^{t,p}(\Omega )}\\&\quad \quad + \int _{\Omega } \int _{\Omega } \frac{|u(x)-u(y)|^{p-1}\ |\eta ^{p-1}(x)-\eta ^{p-1}(y)|\ |\varphi (y)|}{|x-y|^{n+sp}}\ dx\ dy\\&\quad \quad +\int _{\Omega } \int _{\Omega } \frac{|\eta (x)-\eta (y)|\ |u(y)-(u)_{\Omega _1}|\ \eta (x)^{p-2}\ |u(x)-u(y)|^{p-2}\ |\varphi (x)-\varphi (y)|}{|x-y|^{n+sp}}\ dx\ dy\\&\quad \quad +\int _{\Omega } \int _{\Omega } \frac{|\eta (x)-\eta (y)|^{p-1}\ |u(y)-(u)_{\Omega _1}|^{p-1}\ |\varphi (x)-\varphi (y)|}{|x-y|^{n+sp}}\ dx\ dy. \end{aligned}$$

That is for any \(t < s\)

$$\begin{aligned}&| (-\Delta )^{s}_{p,\Omega } \tilde{u}[\varphi ]|\\&\quad \precsim \Vert (-\Delta )^{s}_{p,\Omega }u\Vert _{(W^{t,p}_0(\Omega ))^*}\ [\eta ^{p-1} \varphi ]_{W^{t,p}(\Omega )}\\&\quad \quad + [u]_{W^{s,p}(\Omega )}^{p-1}\ \left( \int _{\Omega } \int _{\Omega } \frac{|\eta ^{p-1}(x)-\eta ^{p-1}(y)|^p\ |\varphi (y)|^p}{|x-y|^{n+sp}}\ dx\ dy \right) ^{\frac{1}{p}}\\&\quad \quad +[\varphi ]_{W^{t,p}(\Omega )}\ [u]_{W^{s,p}(\Omega )}^{p-2} \left( \int _{\Omega } \int _{\Omega _2} \frac{|\eta (x)-\eta (y)|^{p}\ |u(y)-(u)_{\Omega _1}|^p}{|x-y|^{n+(2s-t)p}}\ dx\ dy \right) ^{\frac{1}{p}}\\&\quad \quad +[\varphi ]_{W^{t,p}(\Omega )} \left( \int _{\Omega } \int _{\Omega _2} \frac{|\eta (x)-\eta (y)|^{p}\ |u(y)-(u)_{\Omega _1}|^p}{|x-y|^{n+(2s-t)p}}\ dx\ dy \right) ^{\frac{p-1}{p}}. \end{aligned}$$

Since \(\eta \) is bounded and Lipschitz, \(\mathrm{supp\,}\eta \subset \Omega _2\), and \(\varphi \in C_c^\infty (\Omega _3)\) we have that

$$\begin{aligned}{}[\eta ^{p-1} \varphi ]_{W^{t,p}(\Omega )} \precsim [\varphi ]_{W^{t,p}(\mathbb {R}^n)}. \end{aligned}$$

Also, choosing some bounded \(\Omega _4 \Subset \Omega \) so that \(\Omega _3 \Subset \Omega _4\),

$$\begin{aligned}&\int _{\Omega } \int _{\Omega } \frac{|\eta ^{p-1}(x)-\eta ^{p-1}(y)|^p\ |\varphi (y)|^p}{|x-y|^{n+sp}}\ dx\ dy\\&\quad \precsim \int _{\Omega _3} \int _{\Omega _4} |x-y|^{(1-s)p-n}\ \ dx\ |\varphi (y)|^p dy\\&\quad \quad +\int _{\Omega _3} \int _{\mathbb {R}^n\backslash \Omega _4} |x-y|^{-n-sp}\ \ dx\ |\varphi (y)|^p dy\\&\quad \precsim \Vert \varphi \Vert _{p}^p \precsim [\varphi ]_{W^{t,p}(\mathbb {R}^n)}^p. \end{aligned}$$

Finally, using Lipschitz continuity of \(\eta \) and that \(2s-1 < t < s\)

$$\begin{aligned}&\int _{\Omega } \int _{\Omega _2} \frac{|\eta (x)-\eta (y)|^{p}\ |u(y)-(u)_{\Omega _1}|^p}{|x-y|^{n+(2s-t)p}}\ dx\ dy\\&\quad \precsim \int _{\Omega _3} |u(y)-(u)_{\Omega _1}|^p \int _{\Omega _2} |x-y|^{-n+(t+1-2s)p}\ dx\ dy\\&\quad \quad +\int _{\Omega \backslash \Omega _3} |u(y)-(u)_{\Omega _1}|^p \int _{\Omega _2} \frac{1 }{|x-y|^{n+sp}}\ dx\ dy\\&\quad \precsim \int _{\Omega _1} \int _{\Omega _3} |u(y)-u(z)|^p\ dy\ dz\\&\quad \quad +\int _{\Omega _1} \int _{\Omega \backslash \Omega _3} |u(y)-u(z)|^p \int _{\Omega _2} \frac{1 }{|x-y|^{n+sp}}\ dx\ dy\ dz\\ \end{aligned}$$

Note that for \(x,z \in \Omega _2\) and \(y \in \Omega _3^c\) we have that \(|x-y| \approx |y-z|\), and since \(\Omega _1,\Omega _2,\Omega _3\) are bounded we then have

$$\begin{aligned} \int _{\Omega } \int _{\Omega _2} \frac{|\eta (x)-\eta (y)|^{p}\ |u(y)-(u)_{\Omega _1}|^p}{|x-y|^{n+(2s-t)p}}\ dx\ dy \precsim [u]_{W^{s,p}(\Omega )}. \end{aligned}$$

Thus we have shown that for any \(\varphi \in C_c^\infty (\Omega _3)\),

$$\begin{aligned} | (-\Delta )^{s}_{p,\Omega } \tilde{u}[\varphi ]| \precsim \left( \Vert (-\Delta )^{s}_{p,\Omega }u\Vert _{(W^{t,p}_0(\Omega ))^*} +[u]_{W^{s,p}(\Omega )}^{p-1} \right) \ [\varphi ]_{W^{t,p}(\mathbb {R}^n)}. \end{aligned}$$

Since moreover, \(\mathrm{supp\,}\tilde{u} \subset \Omega _2\), for any \(\varphi \in C_c^\infty (\Omega _3)\),

$$\begin{aligned} | (-\Delta )^{s}_{p,\Omega _3} \tilde{u}[\varphi ]| \precsim | (-\Delta )^{s}_{p,\Omega } \tilde{u}[\varphi ]| + [u]_{W^{s,p}(\Omega )}^{p-1}\ [\varphi ]_{W^{t,p}(\mathbb {R}^n)}, \end{aligned}$$

we get the claim. \(\square \)

The next Lemma estimates the \(W^{s,p}\)-norm in terms of the fractional p-Laplacian.

Lemma 8.2

Let \(B \subset \mathbb {R}^n\) be a ball and 4B the concentric ball with four times the radius. Then for any \(\delta > 0\), \([u]_{W^{s,p}(B)}^{p} \) can be estimated by

$$\begin{aligned}&\delta ^p [u]_{W^{s,p}(4B)}^{p}\\&\quad + \frac{C}{\delta ^{p'}} \left( \sup _{\varphi } \int _{4B}\int _{4B} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx \ dy \right) ^{\frac{p}{p-1}}\\&\quad + \frac{C}{\delta ^{p'}}\ \mathrm{diam\,}(B)^{-sp}\ \int \limits _{4B} |u(x)-(u)_B|^p\ dx \end{aligned}$$

where the supremum is over all \(\varphi \in C_c^\infty (2B)\) and \([\varphi ]_{W^{s,p}(\mathbb {R}^n)} \le 1\).

Proof

Let \(\eta \in C_c^\infty (2B)\), \(\eta \equiv 1\) in B be the usual cutoff function in 2B.

$$\begin{aligned} \psi (x) := \eta (x) (u(x)-(u)_{B}), \quad \text{ and } \quad \varphi (x) := \eta ^2(x) (u(x)-(u)_{B}). \end{aligned}$$

Then,

$$\begin{aligned}{}[\psi ]_{W^{s,p}(\mathbb {R}^n)} + [\varphi ]_{W^{s,p}(\mathbb {R}^n)} \precsim [u]_{W^{s,p}(2B)}. \end{aligned}$$
(8.1)

We have

$$\begin{aligned}{}[u]_{W^{s,p}(B)}^{p} \le \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2} (\psi (x)-\psi (y))\ (\psi (x)-\psi (y))}{|x-y|^{n+sp}} dx\ dy. \end{aligned}$$

Now we observe

$$\begin{aligned} (\psi (x) - \psi (y))^2= & {} (\psi (x) - \psi (y)) (\eta (x) - \eta (y))(u(x)-(u)_{B})\\&+ \psi (x)(\eta (y)-\eta (x))\ (u(x)-u(y))\\&+ (\varphi (x) - \varphi (y))(u(x)-u(y)). \end{aligned}$$

That is,

$$\begin{aligned}{}[u]_{W^{s,p}(B)}^{p} \precsim I + II + III, \end{aligned}$$

with

$$\begin{aligned} I:= & {} \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2} (u(x)-u(y))(\varphi (x)-\varphi (y))}{|x-y|^{n+sp}} dx\ dy,\\ II:= & {} \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2} |\eta (x)-\eta (y)|\ |\psi (x)-\psi (y)|}{|x-y|^{n+sp}}\ |u(x)-(u)_B|\ dx\ dy,\\ III:= & {} \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-1} |\eta (x)-\eta (y)|}{|x-y|^{n+sp}}\ |\psi (x)| dx\ dy. \end{aligned}$$

With (8.1),

$$\begin{aligned} I \le [u]_{W^{s,p}(4B)}\ \sup _{[\varphi ]_{W^{s,p}(\mathbb {R}^n)} \le 1} \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx \ dy. \end{aligned}$$

As for II,

$$\begin{aligned} II \precsim \Vert \nabla \eta \Vert _{\infty }\ \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2} |\psi (x)-\psi (y)|\ |u(x)-(u)_B| }{|x-y|^{n+sp-1}}\ \ dx\ dy. \end{aligned}$$

For any \(t_2 > 0\) so that \( t_2 = 1-s\), we have with Hölder’s inequality

Since \(t_2 > 0\),

$$\begin{aligned} \int \limits _{4B}\int \limits _{4B} \frac{ |u(x)-(u)_B|^p }{|x-y|^{n- t_2p}}\ \ dx\ dy \precsim (\mathrm{diam\,}B) ^{t_2p}\ \int \limits _{4B} |u(x)-(u)_B|^p\ dx. \end{aligned}$$

So using again (8.1), we arrive at

$$\begin{aligned} II \precsim \mathrm{diam\,}(B)^{-s}\ [u]_{W^{s,p}(4B)}^{p-1}\ \left( \int \limits _{4B} |u(x)-(u)_B|^p\ dx \right) ^{\frac{1}{p}}. \end{aligned}$$

III can be estimated the same way as II, and we have the following estimate for \([u]_{W^{s,p}(B)}^{p}\)

$$\begin{aligned}&[u]_{W^{s,p}(4B)}\ \sup _{\varphi } \int \limits _{4B}\int \limits _{4B} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\ (\varphi (x)-\varphi (y))}{|x-y|^{n+sp}}\ dx \ dy\\&\quad +[u]_{W^{s,p}(4B)}^{p-1}\ \mathrm{diam\,}(B)^{-s}\ \left( \int \limits _{4B} |u(x)-(u)_B|^p\ dx \right) ^{\frac{1}{p}}. \end{aligned}$$

We conclude with Young’s inequality. \(\square \)

The next Proposition follows immediately from Jensen’s inequality and the definition of \([u]_{W^{t,p}(\lambda B)}^p\).

Proposition 8.3

(A Poincaré type inequality) Let B be a ball and for \(\lambda \ge 1\) let \(\lambda B\) be the concentric ball with \(\lambda \) times the radius. Then for any \(t \in (0,1)\), \(p \in (1,\infty )\),

$$\begin{aligned} \int \limits _{\lambda B} |u(x)-(u)_B|^p\ dx \precsim \lambda ^{n+tp} \mathrm{diam\,}(B)^{t p} \ [u]_{W^{t,p}(\lambda B)}^p. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schikorra, A. Nonlinear commutators for the fractional p-Laplacian and applications. Math. Ann. 366, 695–720 (2016). https://doi.org/10.1007/s00208-015-1347-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1347-0

Mathematics Subject Classification

Navigation