Skip to main content
Log in

Examples of abelian surfaces with everywhere good reduction

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We describe several explicit examples of simple abelian surfaces over real quadratic fields with real multiplication and everywhere good reduction. These examples provide evidence for the Eichler–Shimura conjecture for Hilbert modular forms over a real quadratic field. Several of the examples also support a conjecture of Brumer and Kramer on abelian varieties associated to Siegel modular forms with paramodular level structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. More precisely, this defines a Hilbert modular form of parallel weight k.

  2. Stroeker’s result is stated for imaginary quadratic fields. Elkies [16] remarks that the argument implies the statement above for real quadratic fields.

References

  1. Abrashkin, V.A.: Good reduction of two-dimensional Abelian varieties. Izv. Akad. Nauk SSSR Ser. Mat. 40(2), 262–272, 460 (1976)

  2. Bouyer, F., Streng, M.: Examples of CM curves of genus two defined over the reflex field. LMS J. Comput. Math. (to appear). arXiv:1307.0486

  3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruinier, J.H.: Hilbert Modular Forms and Their Applications, The 1-2-3 of modular forms, pp. 105–179. Universitext, Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Brumer, A., Kramer, K.: Paramodular abelian varieties of odd conductor. Trans. Am. Math. Soc. 366(5), 2463–2516 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casselman, W.: On abelian varieties with many endomorphisms and a conjecture of Shimura’s. Invent. Math. 12, 225–236 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Couveignes, J.M., Edixhoven, B. (eds.): Computational Aspects of Modular Forms and Galois Representations. How One Can Compute in Polynomial Time the Value of Ramanujan’s tau at a Prime, Annals of Mathematics Studies, vol. 176. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  8. Cremona, J.E.: Modular symbols for \(\Gamma _1(N)\) and elliptic curves with everywhere good reduction. Math. Proc. Camb. Philos. Soc. 111(2), 199–218 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. E. Cremona, Algorithms for modular elliptic curves, second edition, Cambridge University Press, Cambridge, 1997, available at URL: http://homepages.warwick.ac.uk/staff/J.E.Cremona//book/

  10. Cremona, J.E., Elkies, N.D.: Private communication

  11. Cremona, J.E., Lingham, M.P.: Finding all elliptic curves with good reduction outside a given set of primes. Exp. Math. 16(3), 303–312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Comalada, S.: Elliptic curves with trivial conductor over quadratic fields. Pac. J. Math 144(2), 237–258 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dembélé, L., Donnelly, S.: Computing Hilbert modular forms over fields with nontrivial class group. In: Algorithmic Number Theory (Banff: Lecture Notes in Computer Science, vol. 5011, pp. 371–386. Springer, Berlin (2008)

  14. Dembélé, L., Voight, J.: Explicit methods for Hilbert modular forms. In: Elliptic Curves, Hilbert Modular Forms and Galois Deformations, pp. 135–198. Birkhauser, Basel (2013)

  15. Doyle, J.R., Krumm, D.: Computing algebraic numbers of bounded height. Math. Comput. (to appear). arXiv:1111.4963

  16. Elkies, N.D.: Elliptic curves of unit discriminant over real quadratic number fields. http://math.harvard.edu/elkies/rqfu

  17. Elkies, N.D., Kumar, A.: \(K3\) surfaces and equations for Hilbert modular surfaces. Algebra Number Theory 8(10), 2297–2411 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ellenberg, J.S.: Serre’s conjecture over \(\mathbf{F} _9\). Ann. Math. (2) 161(3), 1111–1142 (2005)

  19. Freitag, E.: Hilbert Modular Forms. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  20. Fontaine, J.-M.: Il n’y a pas de variété abélienne sur \(\mathbf{Z}\). Invent. Math. 81(3), 515–538 (1985)

    Article  MathSciNet  Google Scholar 

  21. Gee, T.: A modularity lifting theorem for weight two Hilbert modular forms. Math. Res. Lett. 13(5–6), 805–811 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gee, T.: Erratum—a modularity lifting theorem for weight two Hilbert modular forms. Math. Res. Lett. 16(1), 57–58 (2009)

    Article  MathSciNet  Google Scholar 

  23. González-Jiménez, E., González, J., Guàrdia, J.: Computations on Modular Jacobian surfaces. In: Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Computer Science, vol. 2369, pp. 189–197. Springer, Berlin (2002)

  24. González, J., Guàrdia, J., Rotger, V.: Abelian surfaces of \({{\rm GL}}_2\)-type as Jacobians of curves. Acta Arith. 116(3), 263–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guàrdia, J.: Jacobian nullwerte and algebraic equations. J. Algebra 253(1), 112–132 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Johnson-Leung, J., Roberts, B.: Siegel modular forms of degree two attached to Hilbert modular forms. J. Number Theory 132(4), 543–564 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kagawa, T.: Determination of elliptic curves with everywhere good reduction over \(\mathbf{Q}(\sqrt{37})\). Acta Arith. 83(3), 253–269 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Khare, C.: Modularity of Galois representations and motives with good reduction properties. J. Ramanujan Math. Soc. 22(1), 75–100 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Khare, C., Wintenberger, J.-P.: On Serre’s conjecture for 2-dimensional mod p representations of \({{\rm Gal}}(\overline{\mathbf{Q}}/\mathbf{Q})\). Ann. Math. (2) 169(1), 229–253 (2009)

  30. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 280–293. Hindustan Book Agency, New Delhi (2010)

  31. Langlands, R.P.: Base change for \({\rm GL}_2\). In: Annals of Mathematics Studies, vol. 96. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1980)

  32. Liu, Q.: Courbes stables de genre 2 et leur schéma de modules. Math. Ann. 295(2), 201–222 (1993)

    Article  MathSciNet  Google Scholar 

  33. Mazur, B., Wiles, A.: Class fields of abelian extensions of \(\mathbf{Q}\). Invent. Math. 76(2), 179–330 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mestre, J.-F.: Construction de courbes de genre 2 à partir de leurs modules. In: Effective methods in algebraic geometry (Castiglioncello, 1990), vol. 94, pp. 313–334. Progr. Math. Birkhäuser Boston (1991)

  35. Oda, T.: Periods of Hilbert Modular Surfaces, Progress in Mathematics 19. Birkhäuser, Boston (1982)

    Book  MATH  Google Scholar 

  36. Pinch, R.: Elliptic curves with everywhere good reduction (preprint). http://www.chalcedon.demon.co.uk/rgep/publish.html#04

  37. Stein, W., et al.: Sage Mathematics Software (Version 5.0). The Sage Development Team, (2012) http://www.sagemath.org

  38. Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972)

    Article  MathSciNet  Google Scholar 

  39. Serre, J.-P.: Sur les représentations modulaires de degré \(2\) de \({{\rm Gal}}(\overline{\mathbf{Q}}/\mathbf{Q})\). Duke Math. J. 54(1), 179–230 (1987)

    Article  MathSciNet  Google Scholar 

  40. Setzer, B.: Elliptic curves with good reduction everywhere over quadratic fields and having rational \(j\)-invariant. Illin. J. Math. 25(2), 233–245 (1981)

    MathSciNet  MATH  Google Scholar 

  41. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Reprint of the 1971 original, Publications of the Mathematical Society of Japan, vol. 11. Kanô Memorial Lectures no. 1, Princeton University Press, Princeton (1994)

  42. Shimura, G.: Class fields over real quadratic fields and Hecke operators. Ann. Math. 95(2), 130–190 (1972)

  43. Shimura, G.: On the factors of the Jacobian variety of a modular function field. J. Math. Soc. Jpn. 25, 523–544 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J. 45(3), 637–679 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Smart, N.P.: \(S\)-unit equations, binary forms and curves of genus 2. Proc. Lond. Math. Soc. (3) 75(2), 271–307 (1997)

  46. Skinner, C.M., Wiles, A.J.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math. 89, 5–126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stein, W.: Modular Forms, a Computational Approach, with an Appendix by Paul E. Gunnells, Graduate Studies in Mathematics, vol. 79, pp. xvi+268. American Mathematical Society, Providence (2007)

  48. Stroeker, R.J.: Reduction of elliptic curves over imaginary quadratic number fields. Pac. J. Math. 108(2), 451–463 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tunnell, J.: Artin’s conjecture for representations of octahedral type. Bull. Am. Math. Soc. (N.S.) 5(2), 173–175 (1981)

  50. van der Geer, G.: Hilbert Modular Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 16. Springer, Berlin (1988)

    Google Scholar 

  51. Zhang, S.: Heights of Heegner points on Shimura curves. Ann. Math. (2) 153(1), 27–147 (2001)

Download references

Acknowledgments

We thank Fred Diamond and Haluk Şengün for several helpful email exchanges and discussions, and Noam Elkies, Neil Dummigan, Matthias Schütt and the anonymous referee for useful comments on earlier drafts of this paper. We are also thankful to Florian Bouyer and Marco Streng for many helpful exchanges, and for kindly allowing us to use their reduction package. In the early stages of this project, the first-named author spent some time at the Max-Planck Institute for Mathematics in Bonn. He would like to express his gratitude for their hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lassina Dembélé.

Additional information

AK was supported in part by National Science Foundation Grant DMS-0952486 and by a grant from the Solomon Buchsbaum Research Fund. LD was supported by the Grant EPSRC EP/J002658/1.

Appendix

Appendix

In Table 8 below we list Hilbert modular form data for all the examples considered in this paper.

Table 8 Hecke eigenvalues for the Hilbert modular forms in this paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dembélé, L., Kumar, A. Examples of abelian surfaces with everywhere good reduction. Math. Ann. 364, 1365–1392 (2016). https://doi.org/10.1007/s00208-015-1252-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1252-6

Mathematics Subject Classification

Navigation