Skip to main content
Log in

The resurgence properties of the Hankel and Bessel functions of nearly equal order and argument

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The aim of this paper is to derive new representations for the Hankel functions, the Bessel functions and their derivatives, exploiting the reformulation of the method of steepest descents by Berry and Howls (Proc Roy Soc London Ser A 434:657–675, 1991). Using these representations, we obtain a number of properties of the asymptotic expansions of the Hankel and Bessel functions and their derivatives of nearly equal order and argument, including explicit and numerically computable error bounds, asymptotics for the late coefficients, exponentially improved asymptotic expansions, and the smooth transition of the Stokes discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Airey, J.R.: LXIII. Bessel and neumann functions of equal order and argument. Phil. Mag. Ser. 31, 520–528 (1916)

    Article  MATH  Google Scholar 

  2. Airey, J.R.: XVII. Bessel functions of nearly equal order and argument. Phil. Mag. Ser. 19(7), 230–235 (1935)

    Article  Google Scholar 

  3. Berry, M.V.: Stokes’ phenomenon: smoothing a Victorian discontinuity. Inst. Hautes Études Sci. Publ. Math. 68, 211–221 (1988)

    Article  MATH  Google Scholar 

  4. Berry, M.V.: Uniform asymptotic smoothing of Stokes’ discontinuities. Proc. Roy. Soc. London Ser. A 422, 7–21 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berry, M.V., Howls, C.J.: Hyperasymptotics for integrals with saddles. Proc. Roy. Soc. London Ser. A 434, 657–675 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyd, W.G.C.: Error bounds for the method of steepest descents. Proc. Roy. Soc. London Ser. A 440, 493–518 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Comtet, L.: Advanced Combinatorics. Reidel, Dordrecht (1974)

    Book  MATH  Google Scholar 

  8. Debye, P.: Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index. Math. Ann. 67, 535–558 (1909)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dingle, R.B.: Asymptotic Expansions: Their Derivation and Interpretation. Academic Press, London (1973)

    MATH  Google Scholar 

  10. Gatteschi, L.: Sulla rappresentazione asintotica delle funzioni di Bessel di uguale ordine ed argomento. Ann. Mat. 38, 267–280 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lauwerier, H.A.: The calculation of the coefficients of certain asymptotic series by means of linear recurrent relations. Appl. Sci. Res. Sec. B 2, 77–84 (1952)

    Article  MATH  Google Scholar 

  12. López, J.L., Pagola, P.: An explicit formula for the coefficients of the saddle point method. Constr. Approximate 33, 145–162 (2011)

    Article  MATH  Google Scholar 

  13. Meijer, C.S.: Asymptotische Entwicklungen von Besselschen, Hankelschen und verwandten funktionen III. Proc. Kon. Akad. Wet. Amsterdam 35, 948–958 (1932)

    MATH  Google Scholar 

  14. Milne-Thomson, L.M.: The Calculus of Finite Differences. Macmillan and Co., Ltd., London (1933)

    Google Scholar 

  15. Nemes, G.: An explicit formula for the coefficients in Laplace’s method. Constr. Approximate 38, 471–487 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nemes, G.: The resurgence properties of the large-order asymptotics of the Hankel and Bessel functions. Anal. Appl. 12, 403–462 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nicholson, J.W.: XX. On Bessel functions of equal argument and order. Phil. Mag. Ser. 16(6), 271–279 (1908)

    Article  Google Scholar 

  18. Nörlund, N.E.: Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin (1924)

    Book  MATH  Google Scholar 

  19. Olver, F.W.J.: Some new asymptotic expansions for Bessel functions of large orders. Proc. Cambridge Philos. Soc. 48, 414–427 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  20. Olver, F.W.J.: Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral. SIAM J. Math. Anal. 22, 1460–1474 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Olver, F.W.J.: Uniform, exponentially improved, asymptotic expansions for the confluent hypergeometric function and other integral transforms. SIAM J. Math. Anal. 22, 1475–1489 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/ (2014). Release 1.0.9 of 29 Aug 2014

  23. Paris, R.B., Kaminski, D.: Asymptotics and Mellin-Barnes Integrals. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  24. Paris, R.B.: Hadamard Expansions and Hyperasymptotic Evaluation: An Extension of the Method of Steepest Descents. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  25. Schöbe, W.: Eine an die Nicholsonformel anschliessende asymptotische Entwicklung für Zylinderfunktionen. Acta Math. 92, 265–307 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  26. Watson, G.N.: A Treatise on the Theory of Bessel functions, 2nd edn. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  27. Wojdylo, J.: On the coefficients that arise from Laplace’s method. J. Comput. Appl. Math. 196, 241–266 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wojdylo, J.: Computing the coefficients in Laplace’s method. SIAM Rev. 48, 76–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergő Nemes.

Appendices

Appendix A: Computation of the coefficients \(B_n\left( \kappa \right) \)

In 1952, Lauwerier [11] showed that the coefficients in asymptotic expansions of Laplace-type integrals can be calculated by means of linear recurrence relations. Simple application of his method provides the formula

$$\begin{aligned} B_n \left( \kappa \right) = \frac{{6^{ - \frac{{n + 1}}{3}} }}{{\Gamma \left( {\frac{{n + 1}}{3}} \right) }}\int _0^{ + \infty } {t^{\frac{{n - 2}}{3}} e^{ - \frac{t}{6}} P_n \left( {t,\kappa } \right) dt} , \end{aligned}$$

where the two-variable polynomials \(P_0 \left( x,\kappa \right) , P_1 \left( x,\kappa \right) , P_2 \left( x,\kappa \right) ,\ldots \) are given by the recurrence relation

$$\begin{aligned} P_n \left( {x,\kappa } \right) = \frac{{\kappa ^n }}{{n!}} - \sum \limits _{k = 1}^{\left\lfloor {\frac{n}{2}} \right\rfloor } {\frac{1}{{\left( {2k + 3} \right) !}}\int _0^x {P_{n - 2k} \left( {t,\kappa } \right) dt} } \; \text { for } \; n\ge 2, \end{aligned}$$

with \(P_0 \left( {x,\kappa } \right) = 1\) and \(P_1 \left( {x,\kappa } \right) = \kappa \).

Expanding the higher derivative in (1.9) using Leibniz’s rule and noting that \(t^3/\left( \sinh t -t\right) \) is an even function of \(t\), we deduce

$$\begin{aligned} B_n \left( \kappa \right) = \sum \limits _{k = 0}^{\left\lfloor {\frac{n}{2}} \right\rfloor } {\frac{{\kappa ^{n - 2k} }}{{\left( {n - 2k} \right) !}}\frac{1}{{\left( {2k} \right) !}}\left[ {\frac{{d^{2k} }}{{dt^{2k} }}\left( {\frac{1}{6}\frac{{t^3 }}{{\sinh t - t}}} \right) ^{\frac{{n + 1}}{3}} } \right] _{t = 0} } , \end{aligned}$$
(8.1)

which is Airey’s [2] representation for the coefficients \(B_n\left( \kappa \right) \).

There has been a recent interest in finding explicit formulas for the coefficients in asymptotic expansions of Laplace-type integrals (see [12, 15, 27, 28]). There are two general formulas for these coefficients, one containing Potential polynomials and one containing Bell polynomials. We derive them here for the special case of the coefficients \(B_n\left( \kappa \right) \). Let

$$\begin{aligned} \sinh t - t = \sum \limits _{j= 0}^\infty {a_j t^{j + 3} } , \end{aligned}$$

so that

$$\begin{aligned} a_{2j} = \frac{1}{{\left( {2j + 3} \right) !}},\; a_{2j + 1} = 0 \; \text { for } \; j \ge 0. \end{aligned}$$

Let \(0 \le i \le j\) be integers and \(\rho \) be a complex number. We define the Potential polynomials

$$\begin{aligned} \mathsf {A}_{\rho ,j} = \mathsf {A}_{\rho ,j} \left( {\frac{{a_1 }}{{a_0 }},\frac{{a_2 }}{{a_0 }}, \ldots ,\frac{{a_j }}{{a_0 }}} \right) \end{aligned}$$

and the Bell polynomials

$$\begin{aligned} \mathsf {B}_{j,i} = \mathsf {B}_{j,i} \left( {a_1 ,a_2 , \ldots ,a_{j - i + 1} } \right) \end{aligned}$$

via the expansions

$$\begin{aligned} \left( {1 + \sum \limits _{j = 1}^\infty {\frac{{a_j }}{{a_0 }}t^j } } \right) ^\rho = \sum \limits _{j = 0}^\infty {\mathsf {A}_{\rho ,j} t^j } \; \text { and } \; \mathsf {A}_{\rho ,j} = \sum \limits _{i = 0}^j {\left( {\begin{array}{c}\rho \\ i\end{array}}\right) \frac{1}{a_0^i}\mathsf {B}_{j,i}} . \end{aligned}$$
(8.2)

Naturally, these polynomials can be defined for arbitrary power series with \(a_0\ne 0\). It is possible to express the Potential polynomials with complex parameter in terms of Potential polynomials with integer parameter using the following formula of Comtet [7, p.142]

$$\begin{aligned} \mathsf {A}_{\rho ,j} = \frac{\Gamma \left( { - \rho + j + 1} \right) }{j!\Gamma \left( { - \rho } \right) }\sum \limits _{i = 0}^j {\frac{\left( { - 1} \right) ^i}{- \rho + i}\left( {\begin{array}{c}j\\ i\end{array}}\right) \mathsf {A}_{i,j} } . \end{aligned}$$
(8.3)

With these notations we can write (8.1) as

$$\begin{aligned} B_n \left( \kappa \right) = \sum \limits _{k = 0}^{\left\lfloor {\frac{n}{2}} \right\rfloor } {\frac{{\kappa ^{n - 2k} }}{{\left( {n - 2k} \right) !}}\mathsf {A}_{ - \frac{{n + 1}}{3},2k} } . \end{aligned}$$

Using (8.2) and (8.3) we find

$$\begin{aligned} B_n \left( \kappa \right) = \sum \limits _{k = 0}^{\left\lfloor {\frac{n}{2}} \right\rfloor } {\frac{{\kappa ^{n - 2k} }}{{\left( {n - 2k} \right) !}}\sum \limits _{j = 0}^{2k} {\left( { - 1} \right) ^j 6^j \frac{{\Gamma \left( {\frac{{n + 1}}{3} + j} \right) }}{{j!\Gamma \left( {\frac{{n + 1}}{3}} \right) }}\mathsf {B}_{2k,j}} } \end{aligned}$$

and

$$\begin{aligned} B_n \left( \kappa \right) = \sum \limits _{k = 0}^{\left\lfloor {\frac{n}{2}} \right\rfloor } {\frac{{\kappa ^{n - 2k} }}{{\left( {n - 2k} \right) !}}\frac{{3\Gamma \left( {\frac{{n + 1}}{3} + 2k + 1} \right) }}{{\left( {2k} \right) !\Gamma \left( {\frac{{n + 1}}{3}} \right) }}\sum \limits _{j = 0}^{2k} {\frac{{\left( { - 1} \right) ^j }}{{n + 3j + 1}} \left( {\begin{array}{c}2k\\ j\end{array}}\right) \mathsf {A}_{j,2k} } } . \end{aligned}$$
(8.4)

The quantities \(\mathsf {B}_{k,j}\) and \(\mathsf {A}_{j,k}\) appearing in these formulas may be computed from the recurrence relations

$$\begin{aligned} \mathsf {B}_{k,j} = \sum \limits _{i= 1}^{k - j + 1} {a_i \mathsf {B}_{k - i,j - 1} } \; \text { and } \; \mathsf {A}_{j,k} = \sum \limits _{i = 0}^{k} {\frac{a_i}{a_0}\mathsf {A}_{j - 1,k - i} } \end{aligned}$$

with \(\mathsf {B}_{0,0} = \mathsf {A}_{0,0} = 1\), \(\mathsf {B}_{i,0} = \mathsf {A}_{0,i} = 0\) \(\left( i \ge 1\right) \), \(\mathsf {B}_{i,1} = a_0 \mathsf {A}_{1,i} = a_i\) (see Nemes [15]). In the paper [16], it was shown that the Potential polynomials \(\mathsf {A}_{j,2k}\) in (8.4) can be written as

$$\begin{aligned} \mathsf {A}_{j,2k} = \sum \limits _{i = 0}^j {\left( { - 1} \right) ^{j + i} \left( {\begin{array}{c}j\\ i\end{array}}\right) \frac{{2^{2k + 2j} 6^j }}{{\left( {2k + 2j} \right) !}}B_{2k + 2j}^{\left( { - i} \right) } \left( { - \frac{i}{2}} \right) } , \end{aligned}$$

where \(B_n^{\left( \ell \right) } \left( x\right) \) stands for the generalised Bernoulli polynomials, which are defined by the exponential generating function

$$\begin{aligned} \left( \frac{t}{e^t - 1} \right) ^\ell e^{x t} = \sum \limits _{n = 0}^\infty {B_n^{\left( \ell \right) } \left( x\right) \frac{t^n}{n!}} \; \text { for } \; \left| t\right| < 2\pi . \end{aligned}$$

For basic properties of these polynomials, see Milne-Thomson [14] or Nörlund [18].

Some other properties of the polynomials \(B_n \left( \kappa \right) \) can be found in the paper of Schöbe [25].

Appendix B: Auxiliary estimates

In this appendix, we prove some estimates for the remainder \(R_N^{\left( {H} \right) } \left( {z,\kappa } \right) \). First, we prove the estimate (5.6). Suppose that \(0 \le \arg z \le \pi \) and \(\left| \mathfrak {R}\left( \kappa \right) \right| < \frac{N + 1}{3}\) with \(N\ge 0\). Trivial estimation of (1.10) yields

$$\begin{aligned}&\left| {R_N^{\left( {H} \right) } \left( {z,\kappa } \right) } \right| \\&\ \le \frac{{\left| {e^{2\pi i\kappa } } \right| }}{{6\pi \left| z \right| ^{\frac{{N + 1}}{3}} }}\int _0^{ + \infty } {t^{\frac{{N - 2}}{3}} e^{ - 2\pi t} \left| {\frac{{e^{\frac{{\left( {N + 1} \right) \pi i}}{3}} }}{{1 + i\left( {t/z} \right) ^{\frac{1}{3}} e^{\frac{\pi }{3}i} }} - \frac{{e^{\left( {N + 1} \right) \pi i} }}{{1 - i\left( {t/z} \right) ^{\frac{1}{3}} }}} \right| \left| {H_{it + \kappa }^{\left( 1 \right) } \left( {it} \right) } \right| dt}\\&\ \quad +\, \frac{{\left| {e^{ - 2\pi i\kappa } } \right| }}{{6\pi \left| z \right| ^{\frac{{N + 1}}{3}} }}\int _0^{ + \infty } {t^{\frac{{N - 2}}{3}} e^{ - 2\pi t} \left| {\frac{{e^{\frac{{\left( {N + 1} \right) \pi i}}{3}} }}{{1 - i\left( {t/z} \right) ^{\frac{1}{3}} e^{\frac{\pi }{3}i} }} - \frac{{e^{\left( {N + 1} \right) \pi i} }}{{1 + i\left( {t/z} \right) ^{\frac{1}{3}} }}} \right| \left| {H_{it - \kappa }^{\left( 1 \right) } \left( {it} \right) } \right| dt} . \end{aligned}$$

Employing the elementary inequality

$$\begin{aligned} \frac{1}{{\left| {1 - re^{i\vartheta } } \right| }} \le {\left\{ \begin{array}{ll} \left| \csc \vartheta \right| &{} \; \text { if } \; 0 < \left| \vartheta \text { mod } 2\pi \right| <\frac{\pi }{2}, \\ 1 &{} \; \text { if } \; \frac{\pi }{2} \le \left| \vartheta \text { mod } 2\pi \right| \le \pi , \end{array}\right. } \end{aligned}$$
(9.1)

for \(r>0\), we obtain

$$\begin{aligned} \left| {\frac{{e^{\frac{{\left( {N + 1} \right) \pi i}}{3}} }}{{1 + i\left( {t/z} \right) ^{\frac{1}{3}} e^{\frac{\pi }{3}i} }} - \frac{{e^{\left( {N + 1} \right) \pi i} }}{{1 - i\left( {t/z} \right) ^{\frac{1}{3}} }}} \right| \le \frac{1}{{\left| {1 + i\left( {t/z} \right) ^{\frac{1}{3}} e^{\frac{\pi }{3}i} } \right| }} + \frac{1}{{\left| {1 - i\left( {t/z} \right) ^{\frac{1}{3}} } \right| }}\\ \le 2 + 2 = 4 \end{aligned}$$

and

$$\begin{aligned} \left| {\frac{{e^{\frac{{\left( {N + 1} \right) \pi i}}{3}} }}{{1 - i\left( {t/z} \right) ^{\frac{1}{3}} e^{\frac{\pi }{3}i} }} - \frac{{e^{\left( {N + 1} \right) \pi i} }}{{1 + i\left( {t/z} \right) ^{\frac{1}{3}} }}} \right| \le \frac{1}{{\left| {1 - i\left( {t/z} \right) ^{\frac{1}{3}} e^{\frac{\pi }{3}i} } \right| }} + \frac{1}{{\left| {1 + i\left( {t/z} \right) ^{\frac{1}{3}} } \right| }} \le 1 + 1 = 2. \end{aligned}$$

Hence, we have the estimate

$$\begin{aligned} \left| {R_N^{\left( {H} \right) } \left( {z,\kappa } \right) } \right|\le & {} \frac{{2\left| {e^{2\pi i\kappa } } \right| }}{{3\pi \left| z \right| ^{\frac{{N + 1}}{3}} }}\int _0^{ + \infty } {t^{\frac{{N - 2}}{3}} e^{ - 2\pi t} \left| {H_{it + \kappa }^{\left( 1 \right) } \left( {it} \right) } \right| dt}\\&+ \frac{{\left| {e^{ - 2\pi i\kappa } } \right| }}{{3\pi \left| z \right| ^{\frac{{N + 1}}{3}} }}\int _0^{ + \infty } {t^{\frac{{N - 2}}{3}} e^{ - 2\pi t} \left| {H_{it - \kappa }^{\left( 1 \right) } \left( {it} \right) } \right| dt} . \end{aligned}$$

It remains to show that the integrals on the right-hand side are convergent. The integrands are continuous functions of \(t>0\). The asymptotic expansion (1.1) shows that for large positive \(t\) and fixed \(\kappa \), we have

$$\begin{aligned} H_{it \pm \kappa }^{\left( 1 \right) } \left( {it} \right) \sim \frac{2}{{3\pi }}6^{\frac{1}{3}} \frac{{\sqrt{3} }}{2}\frac{{\Gamma \left( {\frac{1}{3}} \right) }}{{t^{\frac{1}{3}} }}. \end{aligned}$$

We also have

$$\begin{aligned} \left| { H_{it \pm \kappa }^{\left( 1 \right) } \left( {it} \right) } \right| = {\left\{ \begin{array}{ll} \mathcal {O}_\kappa \left( {t^{ - \left| {\mathfrak {R}\left( \kappa \right) } \right| } } \right) &{} \; \text { if } \; \kappa \ne 0, \\ \mathcal {O}\left( {\log t} \right) &{} \; \text { if } \; \kappa = 0, \end{array}\right. } \end{aligned}$$

as \(t\rightarrow 0\) along the positive real axis (see, e.g., [22, Sect. 10.7(i)]). Therefore the integrals are convergent and we conclude that there is a constant \(C_N \left( \kappa \right) >0\) depending only on \(N\) and \(\kappa \), such that if \(0 \le \arg z \le \pi \) and \(\left| \mathfrak {R}\left( \kappa \right) \right| < \frac{N + 1}{3}\), then

$$\begin{aligned} \left| {R_N^{\left( {H} \right) } \left( {z,\kappa } \right) } \right| \le \frac{{C_N \left( \kappa \right) }}{{\left| z \right| ^{\frac{{N + 1}}{3}} }}. \end{aligned}$$

Finally, we extend the region of validity of the expansions (1.1) and (1.2). It was given by Watson that the \(N\)th remainders in the asymptotic expansions (1.1) and (1.2) satisfy

$$\begin{aligned} R_N^{\left( H \right) } \left( {z,\kappa } \right) = \mathcal {O}_{\kappa ,N,\delta } \left( {\frac{1}{{\left| z \right| ^{\frac{{N + 1}}{3}} }}} \right) \; \text { and } \; - R_N^{\left( H \right) } \left( {ze^{\pi i} , - \kappa } \right) = \mathcal {O}_{\kappa ,N,\delta } \left( {\frac{1}{{\left| z \right| ^{\frac{{N + 1}}{3}} }}} \right) \end{aligned}$$

as \(z\rightarrow \infty \) in \(\left| {\arg z} \right| \le \pi - \delta < \pi \), with \(0<\delta \le \pi \) being fixed. However, from the connection between the two remainders it is seen that the first estimate is valid in the larger sector \( - \pi + \delta \le \arg z \le 2\pi - \delta \), and the second estimate is valid in the larger sector \( - 2\pi + \delta \le \arg z \le \pi - \delta \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemes, G. The resurgence properties of the Hankel and Bessel functions of nearly equal order and argument. Math. Ann. 363, 1207–1263 (2015). https://doi.org/10.1007/s00208-015-1198-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1198-8

Mathematics Subject Classification

Navigation