Skip to main content
Log in

Nonlocal Cahn–Hilliard Equation with Degenerate Mobility: Incompressible Limit and Convergence to Stationary States

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The link between compressible models of tissue growth and the Hele–Shaw free boundary problem of fluid mechanics has recently attracted a lot of attention. In most of these models, only repulsive forces and advection terms are taken into account. In order to take into account long range interactions, we include a surface tension effect by adding a nonlocal term which leads to the degenerate nonlocal Cahn–Hilliard equation, and study the incompressible limit of the system. The degeneracy and the source term are the main difficulties. Our approach relies on a new \(L^{\infty }\) estimate obtained by De Giorgi iterations and on a uniform control of the energy despite the source term. We also prove the long-term convergence to a single constant stationary state of any weak solution using entropy methods, even when a source term is present. Our result shows that the surface tension in the nonlocal (and even local) Cahn–Hilliard equation will not prevent the tumor from completely invading the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

Data availability is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67(11), 3176–3193, 2007

    Article  MathSciNet  Google Scholar 

  2. Agosti, A., Cattaneo, C., Giverso, C., Ambrosi, D., Ciarletta, P.: A computational framework for the personalized clinical treatment of glioblastoma multiforme. ZAMM Z. Angew. Math. Mech. 98(12), 2307–2327, 2018

    Article  MathSciNet  Google Scholar 

  3. Armstrong, N.J., Painter, K.J., Sherratt, J.A.: A continuum approach to modelling cell–cell adhesion. J. Theoret. Biol. 243(1), 98–113, 2006

    Article  ADS  MathSciNet  Google Scholar 

  4. Aronson, D.G., Bénilan, P.: Régularité des solutions de l’équation des milieux poreux dans \({\textbf{R} }^{N}\). C. R. Acad. Sci. Paris Sér. A-B 288(2), A103–A105, 1979

    Google Scholar 

  5. Ben Amar, M., Chatelain, C., Ciarletta, P.: Contour instabilities in early tumor growth models. Phys. Rev. Lett. 106, 148101, 2011

    Article  ADS  Google Scholar 

  6. Bevilacqua, G., Perthame, B., Schmidtchen, M.: The Aronson-Bénilan estimate in Lebesgue spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 40(2), 2022

  7. Bolley, F., Villani, C.: Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Ser. 6 14(3), 331–352, 2005

    Google Scholar 

  8. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 183. Springer, New York (2013)

    Google Scholar 

  9. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    Book  Google Scholar 

  10. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28(2), 258–267, 1958

    Article  ADS  Google Scholar 

  11. Carrillo, J.A., Elbar, C., Skrzeczkowski, J.: Degenerate Cahn-Hilliard systems: From nonlocal to local, 2023. arXiv preprint arXiv:2303.11929

  12. Chill, R.: On the Łojasiewicz-Simon gradient inequality. J. Funct. Anal. 201(2), 572–601, 2003

    Article  MathSciNet  Google Scholar 

  13. Crandall, M.G., Pierre, M.: Regularizing effects for \(u_{t}=\Delta \varphi (u)\). Trans. Am. Math. Soc. 274(1), 159–168, 1982

    Google Scholar 

  14. David, N.: Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit. Comm. Part. Differ. Equ. 48(4), 678–710, 2023

    Article  MathSciNet  Google Scholar 

  15. David, N., Perthame, B.: Free boundary limit of a tumor growth model with nutrient. J. Math. Pures Appl. 9(155), 62–82, 2021

    Article  MathSciNet  Google Scholar 

  16. David, N., Schmidtchen, M.: On the incompressible limit for a tumour growth model incorporating convective effects, Comm. Pure Appl. Math. 77(2), 2023

  17. Davoli, E., Ranetbauer, H., Scarpa, L., Trussardi, L.: Degenerate nonlocal Cahn-Hilliard equations: well-posedness, regularity and local asymptotics. Ann. Inst. H. Poincaré C Anal. Non Linéaire 37(3), 627–651, 2020

    Article  ADS  MathSciNet  Google Scholar 

  18. Davoli, E., Scarpa, L., Trussardi, L.: Local asymptotics for nonlocal convective Cahn-Hilliard equations with \(W^{1,1}\) kernel and singular potential. J. Differ. Equ. 289, 35–58, 2021

    Article  ADS  Google Scholar 

  19. Davoli, E., Scarpa, L., Trussardi, L.: Nonlocal-to-local convergence of Cahn–Hilliard equations: neumann boundary conditions and viscosity terms. Arch. Ration. Mech. Anal. 239(1), 117–149, 2021

    Article  MathSciNet  Google Scholar 

  20. Dębiec, T., Perthame, B., Schmidtchen, M., Vauchelet, N.: Incompressible limit for a two-species model with coupling through Brinkman’s law in any dimension. J. Math. Pures Appl. 9(145), 204–239, 2021

  21. Elbar, C., Mason, M., Perthame, B., Skrzeczkowski, J.: From Vlasov equation to degenerate nonlocal Cahn-Hilliard equation. Commun. Math. Phys. 401, 1033–1057, 2023

    Article  ADS  MathSciNet  Google Scholar 

  22. Elbar, C., Perthame, B., Poulain, A.: Degenerate Cahn-Hilliard and incompressible limit of a Keller–Segel model. Commun. Math. Sci. 20(7), 1901–1926, 2022

    Article  MathSciNet  Google Scholar 

  23. Elbar, C., Perthame, B., Skrzeczkowski, J.: Pressure jump and radial stationary solutions of the degenerate Cahn-Hilliard equation. Comptes Rendus. Mécanique 1–20, Online first 2023

  24. Elbar, C., Skrzeczkowski, J.: Degenerate Cahn–Hilliard equation: from nonlocal to local. J. Differ. Equ. 364, 576–611, 2023

    Article  ADS  MathSciNet  Google Scholar 

  25. Friedman, A., Reitich, F.: Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38(3), 262–284, 1999

    Article  MathSciNet  Google Scholar 

  26. Frigeri, S.: Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities. Math. Models Methods Appl. Sci. 26(10), 1955–1993, 2016

    Article  MathSciNet  Google Scholar 

  27. Frigeri, S.: On a nonlocal Cahn–Hilliard/Navier–Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities. Ann. Inst. H. Poincaré C Anal. Non Linéaire 38(3), 647–687, 2021

    Article  ADS  MathSciNet  Google Scholar 

  28. Frigeri, S., Gal, C.G., Grasselli, M.: On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions. J. Nonlinear Sci. 26(4), 847–893, 2016

    Article  ADS  MathSciNet  Google Scholar 

  29. Gal, C., Giorgini, A., Grasselli, M., Poiatti, A.: Global well-posedness and convergence to equilibrium for the Abels–Garcke–Grün model with nonlocal free energy. J. Math. Pures Appl. 9(178), 46–109, 2023

    Article  Google Scholar 

  30. Gal, C.G., Giorgini, A., Grasselli, M.: The separation property for 2D Cahn–Hilliard equations: local, nonlocal and fractional energy cases. Discrete Contin. Dyn. Syst. 43(6), 2270–2304, 2023

    Article  MathSciNet  Google Scholar 

  31. Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Statist. Phys. 87(1–2), 37–61, 1997

    Article  ADS  MathSciNet  Google Scholar 

  32. Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions. II. Interface motion. SIAM J. Appl. Math. 58(6), 1707–1729, 1998

    Article  MathSciNet  Google Scholar 

  33. Gwiazda, P., Perthame, B., Świerczewska Gwiazda, A.: A two-species hyperbolic–parabolic model of tissue growth. Commun. Part. Differ. Equ. 44(12), 1605–1618, 2019

    Article  MathSciNet  Google Scholar 

  34. Haraux, A.: Nonlinear Evolution Equations–Global Behavior of Solutions. Lecture Notes in Mathematics, vol. 841. Springer, Berlin (1981)

    Book  Google Scholar 

  35. He, Q., Li, H.-L., Perthame, B.: Incompressible limits of Patlak-Keller-Segel model and its stationary state, Acta Appl. Math. 188(1), 2023

  36. Kim, I., Mellet, A., Wu, Y.: Density-constrained Chemotaxis and Hele-Shaw flow. Trans. Amer. Math. Soc. 377, 395–429, 2024

    MathSciNet  Google Scholar 

  37. Kim, I., Mellet, A., Wu, Y.: A density-constrained model for chemotaxis. Nonlinearity 36(2), 1082–1119, 2023

    Article  ADS  MathSciNet  Google Scholar 

  38. Kim, I., Požár, N., Woodhouse, B.: Singular limit of the porous medium equation with a drift. Adv. Math. 349, 682–732, 2019

    Article  MathSciNet  Google Scholar 

  39. Kim, I., Zhang, Y.P.: Porous medium equation with a drift: free boundary regularity. Arch. Ration. Mech. Anal. 242(2), 1177–1228, 2021

    Article  MathSciNet  Google Scholar 

  40. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence, R.I. (1968).Translated from the Russian by S. Smith

  41. Lions, P.-L., Masmoudi, N.: On a free boundary barotropic model. Ann. Inst. H. Poincaré C Anal. Non Linéaire 16(3), 373–410, 1999

    Article  ADS  MathSciNet  Google Scholar 

  42. Liu, J.-G., Xu, X.: Existence and incompressible limit of a tissue growth model with autophagy. SIAM J. Math. Anal. 53(5), 5215–5242, 2021

    Article  ADS  MathSciNet  Google Scholar 

  43. Londen, S.-O., Petzeltová, H.: Regularity and separation from potential barriers for a non-local phase-field system. J. Math. Anal. Appl. 379(2), 724–735, 2011

    Article  MathSciNet  Google Scholar 

  44. Lowengrub, J., Titi, E., Zhao, K.: Analysis of a mixture model of tumor growth. Eur. J. Appl. Math. 24(5), 691–734, 2013

    Article  MathSciNet  Google Scholar 

  45. Melchionna, S., Ranetbauer, H., Scarpa, L., Trussardi, L.: From nonlocal to local Cahn-Hilliard equation. Adv. Math. Sci. Appl. 28(2), 197–211, 2019

    MathSciNet  Google Scholar 

  46. Mellet, A., Perthame, B., Quirós, F.: A Hele-Shaw problem for tumor growth. J. Funct. Anal. 273(10), 3061–3093, 2017

    Article  MathSciNet  Google Scholar 

  47. Mielke, A., Mittnenzweig, M.: Convergence to equilibrium in energy-reaction–diffusion systems using vector-valued functional inequalities. J. Nonlinear Sci. 28(2), 765–806, 2018

    Article  ADS  MathSciNet  Google Scholar 

  48. Miranville, A.: The Cahn–Hilliard equation. Recent advances and applications, volume 95 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2019). Recent advances and applications.

  49. Neittaanmaki, P., Sprekels, J., Tiba, D.: Optimization of elliptic systems. Springer Monographs in Mathematics. Springer, New York (2006). Theory and applications.

  50. Perthame, B., Poulain, A.: Relaxation of the Cahn–Hilliard equation with singular single-well potential and degenerate mobility. Eur. J. Appl. Math. 32(1), 89–112, 2021

    Article  MathSciNet  Google Scholar 

  51. Perthame, B., Quirós, F., Vázquez, J.L.: The Hele–Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal. 212(1), 93–127, 2014

    Article  MathSciNet  Google Scholar 

  52. Poiatti, A.: The 3D strict separation property for the nonlocal Cahn-Hilliard equation with singular potential. Anal. PDE, in press, 2022, arXiv preprint arXiv:2303.07745

  53. Poiatti, A., Signori, A.: Regularity results and optimal velocity control of the convective nonlocal Cahn-Hilliard equation in 3D. ESAIM Control Optim. Calc. Var. 30(21), 1–36, 2023

    MathSciNet  Google Scholar 

  54. Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal convective Cahn–Hilliard equation by the velocity in three dimensions. SIAM J. Control Optim. 53(3), 1654–1680, 2015

    Article  MathSciNet  Google Scholar 

  55. Takata, S., Noguchi, T.: A simple kinetic model for the phase transition of the van der Waals fluid. J. Stat. Phys. 172(3), 880–903, 2018

    Article  ADS  MathSciNet  Google Scholar 

  56. Vauchelet, N., Zatorska, E.: Incompressible limit of the Navier–Stokes model with a growth term. Nonlinear Anal. 163, 34–59, 2017

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J.S. was supported by the National Science Center grant 2017/26/M/ST1 /00783. A.P. has been partially funded by MIUR-PRIN research grant n. 2020F3NCPX and is also member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA), Istituto Nazionale di Alta Matematica (INdAM). Part of this work was done while AP was visiting Benoît Perthame at the Laboratoire Jacques-Louis Lions in Paris, whose hospitality is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Elbar.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Additional information

Communicated by D. Kinderlehrer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Tools

Technical Tools

Several tools have been used to carry out some proofs. First, we present a lemma about geometric convergence of numerical sequences, whose proof can be easily obtained by induction (see, e.g., [40, Ch.2, Lemma 5.6]).

Lemma A.1

Let \(\{y_n\}_{n\in {\mathbb {N}}\cup \{0\}}\subset {\mathbb {R}}^+\) satisfy the recursive inequality

$$\begin{aligned} y_{n+1}\le Cb^ny_n^{1+\epsilon }, \quad \forall n\ge 0, \qquad \text {and} \qquad y_0\le \theta := C^{-\frac{1}{\epsilon }}b^{-\frac{1}{\epsilon ^2}}, \end{aligned}$$
(A.1)

for some \(C>0\), \(b>1\) and \(\epsilon >0\). Then, \(y_n\rightarrow 0\) for \(n\rightarrow \infty \) with geometric rate

$$\begin{aligned} y_n\le \theta b^{-\frac{n}{\epsilon }},\qquad \forall n\ge 0. \end{aligned}$$
(A.2)

Next, we state a theorem concerning the absolute continuity of some integrals of convex functions in \({\mathbb {R}}\), whose proof can be found, e.g. in [34, p.101].

Theorem A.2

Let \(T>0\) and let \(h: {\mathbb {R}}\rightarrow {\mathbb {R}}\) be a convex and lower semicontinuous function. Assume that

  • \(f\in L^2(0,T;H^1(\Omega ))\) and \(\partial _t f\in L^2(0,T; (H^1(\Omega ))')\),

  • \(g(x,t)\in \partial h(x,t)\) for almost every \((x,t)\in \Omega \times (0,T)\),

  • \(g\in L^2(0,T;H^1(\Omega ))\).

Then, the function \(t\mapsto \int _\Omega h(f(x,t))\) is absolutely continuous on [0, T], and

$$\begin{aligned} \frac{d}{dt} \int _\Omega h(f){\textrm{d}}x =\langle \partial _t f, g\rangle \quad \text {for almost any } t\in (0,T). \end{aligned}$$

We then propose a control on the \(H^1(\Omega )\)-norm related to the use of \(\omega _\varepsilon \).

Lemma A.3

There exists \(\varepsilon _0>0\) and a constant C such that for \(\varepsilon \in (0, \varepsilon _0)\) and all \(f\in L^2(\Omega )\) we have

$$\begin{aligned} \Vert f - {\overline{f}} \Vert _{L^2(\Omega )}^2\le \frac{C}{2\varepsilon ^2} \int _\Omega \int _\Omega \omega _\varepsilon (y)\vert f(x)- f(x-y) \vert ^2{\textrm{d}}x {\textrm{d}}y, \end{aligned}$$
(A.3)

where \({\overline{f}}\) is the average of f over \(\Omega \). Similarly, for all \(\alpha \), there exists \(\varepsilon _0(\alpha )>0\) and constant \(C(\alpha )\) such that for all \(\varepsilon \in (0, \varepsilon _0)\) and all \(f\in H^1(\Omega )\) we have

$$\begin{aligned} \Vert f\Vert _{H^1(\Omega )}^2\le \frac{\alpha }{2\varepsilon ^2} \int _\Omega \int _\Omega \omega _\varepsilon (y)\vert \nabla f(x)-\nabla f(x-y) \vert ^2{\textrm{d}}x {\textrm{d}}y+C(\alpha ) \Vert f \Vert _{L^1(\Omega )}^2. \end{aligned}$$
(A.4)

Proof

The proof is identical to the one in [24, Lemma C.3] by substituting the norm \(\Vert ~ \cdot ~\Vert _{L^2({\mathbb {T}}^d)}\) with the norm \(\Vert \cdot \Vert _{L^1({\mathbb {T}}^d)}\). Indeed, with the notation of the proof of that Lemma, also \(n\Vert g_n\Vert _{L^1({\mathbb {T}}^d)}<1\) implies that the limit function \(g=0\), exactly as in the case \(L^2({\mathbb {T}}^d)\). \(\square \)

In conclusion, we recall the Csiszár–Kullback–Pinsker inequality (see, e.g., [7]), which is essential to study the asymptotic behavior of weak solutions.

Lemma A.4

For any non-negative \(u\in L^1(\Omega )\)

$$\begin{aligned} 4 |\Omega | {\overline{u}} \int _\Omega u\log \left( \dfrac{u}{{\overline{u}}}\right) {\textrm{d}}x \ge \Vert u-{\overline{u}}\Vert ^{2}_{L^{1}(\Omega )}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbar, C., Perthame, B., Poiatti, A. et al. Nonlocal Cahn–Hilliard Equation with Degenerate Mobility: Incompressible Limit and Convergence to Stationary States. Arch Rational Mech Anal 248, 41 (2024). https://doi.org/10.1007/s00205-024-01990-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-024-01990-0

Navigation