Skip to main content
Log in

Higher Order Boundary Harnack Principle via Degenerate Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

As a first result we prove higher order Schauder estimates for solutions to singular/degenerate elliptic equations of type

$$\begin{aligned} -\textrm{div}\left( \rho ^aA\nabla w\right) =\rho ^af+\textrm{div}\left( \rho ^aF\right) \quad \text {in}\; \Omega \end{aligned}$$

for exponents \(a>-1\), where the weight \(\rho \) vanishes with non zero gradient on a regular hypersurface \(\Gamma \), which can be either a part of the boundary of \(\Omega \) or mostly contained in its interior. As an application, we extend such estimates to the ratio v/u of two solutions to a second order elliptic equation in divergence form when the zero set of v includes the zero set of u which is not singular in the domain (in this case \(\rho =u\), \(a=2\) and \(w=v/u\)). We prove first the \(C^{k,\alpha }\)-regularity of the ratio from one side of the regular part of the nodal set of u in the spirit of the higher order boundary Harnack principle in Savin (Discrete Contin Dyn Syst 35–12:6155–6163, 2015). Then, by a gluing Lemma, the estimates extend across the regular part of the nodal set. Finally, using conformal mapping in dimension \(n=2\), we provide local gradient estimates for the ratio, which hold also across the singular set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

this manuscript has no associated data.

References

  1. Allen, M., Shahgholian, H.: A new boundary Harnack principle (equations with right hand side). Arch. Rational Mech. Anal. 234–3, 1413–1444, 2019

    Article  ADS  MathSciNet  Google Scholar 

  2. Apushkinskaya, D., Nazarov, A.: On the Boundary Point Principle for divergence-type equations. Rend. Lincei Mat. Appl. 30–4, 677–699, 2019

    MathSciNet  Google Scholar 

  3. Banerjee, A., Garofalo, N.: A parabolic analogue of the higher-order comparison theorem of De Silva and Savin. J. Differ. Equ. 260–2, 1801–1829, 2016

    Article  ADS  MathSciNet  Google Scholar 

  4. Bers, L.: Local behavior of solution of general linear elliptic equations. Commun. Pure Appl. Math. 8–4, 473–496, 1955

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32–8, 1245–1260, 2007

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L., Stinga, P.R.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(3), 767–807, 2016

    Article  ADS  MathSciNet  Google Scholar 

  7. Chang, S.-Y.A., González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226–2, 1410–1432, 2011

    Article  MathSciNet  Google Scholar 

  8. Cheeger, J., Naber, A., Valtorta, D.: Critical sets of elliptic equations. Commun. Pure Appl. Math. 68–2, 173–209, 2015

    Article  MathSciNet  Google Scholar 

  9. Cheng, S.Y.: Eigenfunctions and nodal sets. Commentarii Mathematici Helvetici 51, 43–55, 1976

    Article  MathSciNet  Google Scholar 

  10. David, G., Feneuil, J., Mayboroda, S.: Elliptic theory for sets with higher co-dimensional boundaries. Mem. Amer. Math. Soc. 274–346, vi+123 pp (2021)

  11. David, G., Mayboroda, S.: Approximation of Green functions and domains with uniformly rectifiable boundaries of all dimensions. Adv. Math. 410, 1–52, 2022

    Article  MathSciNet  Google Scholar 

  12. De Silva, D., Savin, O.: A note on higher regularity boundary Harnack inequality. Discrete Contin. Dyn. Syst. 35–12, 6155–6163, 2015

    Article  MathSciNet  Google Scholar 

  13. Garofalo, N., Lin, F.H.: Monotonicity properties of variational integrals, Ap weights and unique continuation. Indiana Univ. Math. J. 35–2, 245–268, 1986

    Article  Google Scholar 

  14. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152–1, 89–118, 2003

    Article  ADS  MathSciNet  Google Scholar 

  15. Han, Q.: Singular sets of solutions to elliptic equations. Indiana Univ. Math. J. 43–3, 983–1002, 1994

    Article  MathSciNet  Google Scholar 

  16. Han, Q.: Singular sets of harmonic functions in \({\mathbb{R} }^2\) and their complexifications in \({\mathbb{C} }^2\). Indiana Univ. Math. J. 53–5, 1365–1380, 2004

    Article  Google Scholar 

  17. Han, Q., Lin, F.: Elliptic partial differential equations. Second edition. Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI , x+147 pp (2011)

  18. Han, Q., Lin, F.: Nodal sets of solutions of elliptic differential equations. unpublished manuscript, (2013).

  19. Hartman, P., Wintner, A.: On the local behavior of solutions of non-parabolic partial differential equations. Amer. J. Math. 75–3, 449–476, 1953

    Article  MathSciNet  Google Scholar 

  20. Hartman, P., Wintner, A.: On the local behavior of solutions of non-parabolic partial differential equations. III Approximations by spherical harmonics. Amer. J. Math. 77–3, 453–474, 1955

    Article  MathSciNet  Google Scholar 

  21. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 26–1, 101–138, 2009

    ADS  MathSciNet  Google Scholar 

  22. Kozlov, V., Kuznetsov, N.: A comparison theorem for super- and subsolutions of \(\nabla ^2u+f(u)=0\) and its application to water waves with vorticity. Algebra Anal. 30–3, 112–128, 2018

    Google Scholar 

  23. Kukuljan, T.: Higher order parabolic boundary Harnack inequality in \(C^1\) and \(C^{k,\alpha }\) domains. Discrete Contin. Dyn. Syst. 42–6, 2667–2698, 2022

    Article  MathSciNet  Google Scholar 

  24. Lin, F., Lin, Z.: Boundary Harnack principle on nodal domains. Sci. China Math. 63–12, 2441–2458, 2022

    Article  MathSciNet  Google Scholar 

  25. Logunov, A., Malinnikova, E.: On ratios of harmonic functions. Adv. Math. 274, 241–262, 2015

    Article  MathSciNet  Google Scholar 

  26. Logunov, A., Malinnikova, E.: Ratios of harmonic functions with the same zero set. Geom. Funct. Anal. 26–3, 909–925, 2016

    Article  MathSciNet  Google Scholar 

  27. Maiale, F.P., Tortone, G., Velichkov, B.: The Boundary Harnack principle on optimal domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. https://doi.org/10.2422/2036-2145.202112_003.

  28. Mangoubi, D.: A gradient estimate for harmonic functions sharing the same zeros. Electron. Res. Announc. Math. Sci. 21, 62–71, 2014

    MathSciNet  Google Scholar 

  29. Mazzeo, R.: Elliptic theory of differential edge operators I. Commun. Partial Differ. Equ. 16–10, 1615–1664, 1991

    MathSciNet  Google Scholar 

  30. Mazzeo, R., Vertman, B.: Elliptic theory of differential edge operators, II: boundary value problems. Indiana Univ. Math. J. 63–6, 1911–1955, 2014

    Article  MathSciNet  Google Scholar 

  31. Molchanov, S.A., Ostrovskii, E.: Symmetric stable processes as traces of degenerate diffusion processes. Theory Prob. App. 14(1), 128–131, 1969

    Article  MathSciNet  Google Scholar 

  32. Naber, A., Valtorta, D.: Volume estimates on the critical sets of solutions to elliptic PDEs. Commun. Pure Appl. Math. 70–10, 1835–1897, 2017

    Article  MathSciNet  Google Scholar 

  33. Ros-Oton, X., Torres-Latorre, D.: New boundary Harnack inequalities with right hand side. J. Differ. Equ. 288, 204–249, 2021

    Article  ADS  MathSciNet  Google Scholar 

  34. Sire, Y., Terracini, S., Vita, S.: Liouville type theorems and regularity of solutions to degenerate or singular problems part I: even solutions. Commun. Partial Differ. Equ. 46–2, 310–361, 2021

    Article  MathSciNet  Google Scholar 

  35. Sire, Y., Terracini, S., Vita, S.: Liouville type theorems and regularity of solutions to degenerate or singular problems part II: odd solutions. Math. Eng. 3–1, 1–50, 2021

    Article  MathSciNet  Google Scholar 

  36. Soave, N., Terracini, S.: The nodal set of solutions to some elliptic problems: singular nonlinearities. J. Math. Pure. Appl. 128, 264–296, 2019

    Article  MathSciNet  Google Scholar 

  37. Terracini, S., Tortone, G., Vita, S.: A priori regularity estimates for equations degenerating on nodal sets. In preparation.

Download references

Acknowledgements

G.T. is supported by the European Research Council’s (ERC) project n.853404 ERC VaReg - Variational approach to the regularity of the free boundaries, funded by the program Horizon 2020. The authors are research fellow of Istituto Nazionale di Alta Matematica INDAM group GNAMPA

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Terracini.

Additional information

Communicated by F. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terracini, S., Tortone, G. & Vita, S. Higher Order Boundary Harnack Principle via Degenerate Equations. Arch Rational Mech Anal 248, 29 (2024). https://doi.org/10.1007/s00205-024-01973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-024-01973-1

Mathematics Subject Classification

Navigation