Skip to main content
Log in

Self-Similar Finite-Time Blowups with Smooth Profiles of the Generalized Constantin–Lax–Majda Model

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We show that the a-parameterized family of the generalized Constantin–Lax–Majda model, also known as the Okamoto–Sakajo–Wunsch model, admits exact self-similar finite-time blowup solutions with interiorly smooth profiles for all \(a\le 1\). Depending on the value of a, these self-similar profiles are either smooth on the whole real line or compactly supported and smooth in the interior of their closed supports. The existence of these profiles is proved in a consistent way by considering the fixed-point problem of an a-dependent nonlinear map, based on which detailed characterizations of their regularity, monotonicity, and far-field decay rates are established. Our work unifies existing results for some discrete values of a and also explains previous numerical observations for a wide range of a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambrose, D. M., Lushnikov, P. M., Siegel, M., Silantyev, D. A.: Global existence and singularity formation for the generalized Constantin–Lax–Majda equation with dissipation: The real line vs. periodic domains. Nonlinearity. arXiv preprint arXiv:2207.07548 (2022)

  2. Castro, A., Córdoba, D.: Infinite energy solutions of the surface quasi-geostrophic equation. Adv. Math. 225(4), 1820–1829, 2010

    Article  MathSciNet  Google Scholar 

  3. Córdoba, A., Córdoba, D., Fontelos, M.A.: Formation of singularities for a transport equation with nonlocal velocity. Ann. Math. , 1377–1389, 2005

  4. Chen, J., Hou, T. Y.: Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data. arXiv preprint arXiv:2210.07191, 2022.

  5. Chen, J.: Singularity formation and global well-posedness for the generalized Constantin–Lax–Majda equation with dissipation. Nonlinearity 33(5), 2502, 2020

    Article  ADS  MathSciNet  Google Scholar 

  6. Chen, J.: On the regularity of the De Gregorio model for the 3D Euler equations. Journal of the European Mathematical Society. arXiv preprint arXiv:2107.04777, 2021.

  7. Chen, J.: On the slightly perturbed De Gregorio model on \( {S}^1\). Arch. Ration. Mech. Anal. 241(3), 1843–1869, 2021

    Article  MathSciNet  Google Scholar 

  8. Chen, J., Hou, T.Y., Huang, D.: On the finite time blowup of the De Gregorio model for the 3D Euler equations. Commun. Pure Appl. Math. 74(6), 1282–1350, 2021

    Article  MathSciNet  Google Scholar 

  9. Constantin, P., Lax, P.D., Majda, A.: A simple one-dimensional model for the three-dimensional vorticity equation. Commun. Pure Appl. Math. 38(6), 715–724, 1985

    Article  ADS  MathSciNet  Google Scholar 

  10. De Gregorio, S.: On a one-dimensional model for the three-dimensional vorticity equation. J. Stat. Phys. 59(5), 1251–1263, 1990

    Article  ADS  MathSciNet  Google Scholar 

  11. De Gregorio, S.: A partial differential equation arising in a 1d model for the 3d vorticity equation. Math. Methods Appl. Sci. 19(15), 1233–1255, 1996

    Article  MathSciNet  Google Scholar 

  12. Dong, H.: Well-posedness for a transport equation with nonlocal velocity. J. Funct. Anal. 255(11), 3070–3097, 2008

    Article  MathSciNet  Google Scholar 

  13. Elgindi, T. M., Ghoul, T.-E., Masmoudi, N.: On the stability of self-similar blow-up for \({C}^{1,\alpha }\) solutions to the incompressible Euler equations on \(\mathbb{R}^{3}\). Cambridge Journal of Mathematics. arXiv preprint arXiv:1910.14071, 2019

  14. Elgindi, T.M., Ghoul, T.-E., Masmoudi, N.: Stable self-similar blow-up for a family of nonlocal transport equations. Anal. PDE 14(3), 891–908, 2021

    Article  MathSciNet  Google Scholar 

  15. Elgindi, T.M., Jeong, I.-J.: On the effects of advection and vortex stretching. Arch. Ration. Mech. Anal. 235(3), 1763–1817, 2020

    Article  MathSciNet  Google Scholar 

  16. Elgindi, T.M.: Finite-time singularity formation for \({C}^{1,\alpha }\) solutions to the incompressible Euler equations on \(\mathbb{R} ^{3}\). Ann. Math. 194(3), 647–727, 2021

    Article  MathSciNet  Google Scholar 

  17. Hou, T.Y., Li, R.: Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci. 16(6), 639–664, 2006

    Article  ADS  MathSciNet  Google Scholar 

  18. Hou, T.Y., Li, C.: Dynamic stability of the three-dimensional axisymmetric Navier–Stokes equations with swirl. Commun. Pure Appl. Math.: J. Issued Courant Inst. Math. Sci. 61(5), 661–697, 2008

    Article  MathSciNet  Google Scholar 

  19. Hou, T.Y., Lei, Z.: On the stabilizing effect of convection in three-dimensional incompressible flows. Commun. Pure Appl. Math.: J. Issued Courant Inst. Math. Sci. 62(4), 501–564, 2009

    Article  MathSciNet  Google Scholar 

  20. Huang, D., Tong, J., Wei, D.: On self-similar finite-time blowups of the De Gregorio model on the real line. Communications in Mathematical Physics. arXiv preprint arXiv:2209.08232, 2022.

  21. Jia, H., Stewart, S., Sverak, V.: On the De Gregorio modification of the Constantin–Lax–Majda model. Arch. Ration. Mech. Anal. 231(2), 1269–1304, 2019

    Article  MathSciNet  Google Scholar 

  22. Kiselev, A.: Regularity and blow up for active scalars. Math. Model. Natural Phenomena 5(4), 225–255, 2010

    Article  MathSciNet  Google Scholar 

  23. Lei, Z., Liu, J., Ren, X.: On the Constantin–Lax–Majda model with convection. Commun. Math. Phys. 375(1), 765–783, 2020

    Article  ADS  MathSciNet  Google Scholar 

  24. Li, D., Rodrigo, J.: Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation. Adv. Math. 217(6), 2563–2568, 2008

    Article  MathSciNet  Google Scholar 

  25. Lushnikov, P.M., Silantyev, D.A., Siegel, M.: Collapse versus blow-up and global existence in the generalized Constantin–Lax–Majda equation. J. Nonlinear Sci. 31(5), 1–56, 2021

    Article  MathSciNet  Google Scholar 

  26. Martınez, A. C.: Nonlinear and nonlocal models in fluid mechanics, 2010

  27. Okamoto, H., Ohkitani, K.: On the role of the convection term in the equations of motion of incompressible fluid. J. Phys. Soc. Jpn. 74(10), 2737–2742, 2005

    Article  ADS  Google Scholar 

  28. Okamoto, H., Sakajo, T., Wunsch, M.: On a generalization of the Constantin–Lax–Majda equation. Nonlinearity 21(10), 2447, 2008

    Article  ADS  MathSciNet  Google Scholar 

  29. Schochet, S.: Explicit solutions of the viscous model vorticity equation. Commun. Pure Appl. Math. 39(4), 531–537, 1986

    Article  MathSciNet  Google Scholar 

  30. Silvestre, L., Vicol, V.: On a transport equation with nonlocal drift. Trans. Am. Math. Soc. 368(9), 6159–6188, 2016

    Article  MathSciNet  Google Scholar 

  31. Wunsch, M.: The generalized Constantin–Lax–Majda equation revisited. Commun. Math. Sci. 9(3), 929–936, 2011

    Article  MathSciNet  Google Scholar 

  32. Zheng, F.: Exactly self-similar blow-up of the generalized De Gregorio equation. Nonlinearity. arXiv preprint arXiv:2209.09886, 2022

Download references

Acknowledgements

The authors are supported by the National Key R &D Program of China under the grant 2021YFA1001500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Huang.

Additional information

Communicated by P. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Special Functions

1.1 A.1 Special Function F

We define

$$\begin{aligned} F(t):= \frac{t^2-1}{2t}\ln \left| \frac{t+1}{t-1}\right| + 1, \quad t\ge 0. \end{aligned}$$
(A.1)

The derivative of F reads

$$\begin{aligned} F'(t) = \frac{t^2+1}{2t^2}\ln \left| \frac{t+1}{t-1}\right| - \frac{1}{t}. \end{aligned}$$

For \(t\in [0,1)\), F(t) and \(F'(t)\) have the Taylor expansions

$$\begin{aligned} F(t) = \sum \limits _{n=1}^\infty \frac{2t^{2n}}{4n^2-1},\quad F'(t) = \sum \limits _{n=1}^\infty \frac{4nt^{2n-1}}{4n^2-1}. \end{aligned}$$

For \(t\in [0,1)\), F(1/t) and \(F'(1/t)\) have the Taylor expansions

$$\begin{aligned} F(1/t) = 2 - \sum \limits _{n=1}^\infty \frac{2t^{2n}}{4n^2-1},\quad F'(1/t) = \sum \limits _{n=1}^\infty \frac{4nt^{2n+1}}{4n^2-1}. \end{aligned}$$

Lemma A.1

The function F defined in (A.1) satisfies

  1. (1)

    \(F(1/t) = 2-F(t)\), \(F'(1/t) = t^2F'(t)\);

  2. (2)

    \(F\in C([0,+\infty ))\), \(F(0) = 0\), \(F(1) = 1\), \(\lim _{t\rightarrow +\infty }F(t)=2\), \(\lim _{t\rightarrow 0}F(t)/t = 0\);

  3. (3)

    \(F'(0)=0\) and \(F'(t)>0\) for \(t> 0\).

Proof

Property (1) is straightforward to check. (2) follows from the Taylor expansion of F(t) and property (1). (3) follows from the Taylor expansion of \(F'(t)\) and property (1). \(\square \)

1.2 A.2 Special Function G

We define

$$\begin{aligned} G(t):= \frac{3t^4 - 2t^2 - 1}{8t^3}\ln \left| \frac{t+1}{t-1}\right| + \frac{1}{4t^2} + \frac{7}{12}, \quad t\ge 0. \end{aligned}$$
(A.2)

The derivative of G reads

$$\begin{aligned} G'(t) = \frac{3t^4 + 2t^2 + 3}{8t^4}\ln \left| \frac{t+1}{t-1}\right| - \frac{3t^2+3}{4t^3}. \end{aligned}$$

For \(t\in [0,1)\), G(t) and \(G'(t)\) have the Taylor expansions

$$\begin{aligned} G(t) = \sum \limits _{n=1}^{+\infty }\frac{4(n+1)t^{2n}}{(2n-1)(2n+1)(2n+3)},\quad G'(t) = \sum \limits _{n=1}^{+\infty }\frac{8n(n+1)t^{2n-1}}{(2n-1)(2n+1)(2n+3)}. \end{aligned}$$

For \(t\in [0,1)\), G(1/t) and \(G'(1/t)\) have the Taylor expansions

$$\begin{aligned} G(1/t)= & {} \frac{4}{3}-\sum \limits _{n=1}^{+\infty }\frac{4nt^{2n+2}}{(2n-1)(2n+1)(2n+3)},\\ G'(1/t)= & {} \sum \limits _{n=1}^{+\infty }\frac{8n(n+1)t^{2n+3}}{(2n-1)(2n+1)(2n+3)}. \end{aligned}$$

Lemma A.2

The function G defined in (A.2) satisfies

  1. (1)

    \(G'(1/t) = t^4G'(t)\);

  2. (2)

    \(G\in C([0,+\infty ))\), \(G(0) = 0\), \(G(1) = 5/6\), \(\lim _{t\rightarrow +\infty }G(t)=4/3\), \(\lim _{t\rightarrow 0}G(t)/t=0\);

  3. (3)

    \(G'(t)\ge 0\) for \(t\ge 0\).

  4. (4)

    \((4t/3-tG(1/t))' = tF'(1/t)\) for \(t\ge 0\).

Proof

Properties (1) is straightforward to check. (2) follows from the Taylor expansions of G(t) and G(1/t). (3) follows from the Taylor expansion of \(F'(t)\) and property (1). (4) can be checked straightforwardly by the definitions of G(t) and F(t). \(\square \)

1.3 A.3 Special Functions \(F_i\)

Based on the special function F in Appendix A.1, we introduce a series of functions \(F_i(t), t\ge 0, i=1,2,3,4\) that appear in the proof of Theorem 4.3:

$$\begin{aligned} \begin{aligned} F_1(t)&:= \int _0^tsF'(s)\, \textrm{d}{s},\\ F_2(t)&:= t^{-1}F_1(t) + tF_1(1/t),\\ F_3(t)&:= \int _0^ts^2F_2(s)\, \textrm{d}{s},\\ F_4(t)&:= t^3\int _0^{1/t}s^5F_3(1/s)\, \textrm{d}{s}. \end{aligned} \end{aligned}$$

It is not hard to check that, for \(t>0\),

$$\begin{aligned} F_3'(1/t) = t^{-4}F_3'(t), \end{aligned}$$

which immediately leads to

$$\begin{aligned} F_4(t) = F_4(1/t) = \frac{1}{6}\left( t^{-3}F_3(t) + t^3F_3(1/t)\right) . \end{aligned}$$

Using the Taylor expansions of F and properties of F in Lemma A.1, we can obtain the Taylor expansions of each \(F_i\): for \(t\in [0,1]\),

$$\begin{aligned} F_1(t)= & {} \sum \limits _{n=1}^\infty \frac{4nt^{2n+1}}{(2n-1)(2n+1)^2},\quad F_1(1/t) = \frac{\pi ^2}{4} - \sum \limits _{n=1}^\infty \frac{4nt^{2n-1}}{(2n-1)^2(2n+1)};\\ F_2(t)= & {} F_2(1/t) = \frac{\pi ^2}{4}t - \sum \limits _{n=1}^\infty \frac{8nt^{2n}}{(2n-1)^2(2n+1)^2};\\ F_3(t)= & {} \frac{\pi ^2}{16}t^4 - \sum \limits _{n=1}^\infty \frac{8nt^{2n+3}}{(2n-1)^2(2n+1)^2(2n+3)},\\ F_3(1/t)= & {} \frac{\pi ^2}{8}t^{-2} + \sum \limits _{n=1}^\infty \frac{8nt^{2n-3}}{(2n-3)(2n-1)^2(2n+1)^2};\\ F_4(t)= & {} F_4(1/t) = \frac{\pi ^2}{32}t + \sum \limits _{n=1}^\infty \frac{8nt^{2n}}{(2n-3)(2n-1)^2(2n+1)^2(2n+3)}. \end{aligned}$$

An elementary calculation shows that \(F_4'(t)\ge F_4'(1) = 0\) for \(t\in [0,1]\). Hence, the maximum of \(F_4(t)\) is achieved at \(t=1\) with

$$\begin{aligned} F_4(1) = \frac{\pi ^2}{32} + \sum \limits _{n=1}^\infty \frac{8n}{(2n-3)(2n-1)^2(2n+1)^2(2n+3)} = \frac{\pi ^2}{32} - \frac{1}{6}, \end{aligned}$$

which is used in the proof of Theorem 4.3.

1.4 A.4 Special Functions \((1-x^2 - p)_+ + p\)

The functions \(f_{m,p}:= (1-x^2 - p)_+ + p\) with \(p\in [0,1-\eta /4)\) are a special family in the function set \(\mathbb {D}\) that satisfy \(b(f_{m,p})/c(f_{m,p}) = (1-p)/3\). In particular, \(f_m:= f_{m,0} = (1-x^2)_+\) is the minimal function in \(\mathbb {D}\) in the sense that \(f(x)\ge f_m(x)\) for all x and all \(f\in \mathbb {D}\). We have used the following properties of \(f_{m,p}\) in our preceding arguments.

First, we can compute that, for \(x\ge 1\),

$$\begin{aligned} {\varvec{T}}(f_{m,p})(x) + b(f_{m,p})&= \frac{1}{\pi }\int _0^{+\infty }f_{m,p}'(y)\cdot y(F(x/y)-2)\, \textrm{d}{y}\\&= \frac{2}{\pi }\int _0^{\sqrt{1-p}}y^2F(y/x)\, \textrm{d}{y} = \frac{2}{\pi }x^3\cdot \int _0^{\sqrt{1-p}/x}t^2F(t)\, \textrm{d}{t} \\&\ge \frac{4}{15\pi }\cdot \frac{(1-p)^{5/2}}{x^2}. \end{aligned}$$

In particular, for \(x\ge 1\),

$$\begin{aligned} {\varvec{T}}(f_m)(x) + b(f_m) \ge \frac{4}{15\pi }x^{-2}, \end{aligned}$$

which has been used in the proof of Theorem 4.10 part (1).

Based on the estimates above, we find that for \(x\ge 1\),

$$\begin{aligned} {\varvec{R}}_1(f_{m,p})(x)&= {\varvec{T}}_1(f_{m,p})(x) = \left( 1 + \frac{3{\varvec{T}}(f_{m,p})(x)}{c(f_{m,p})}\right) _+ \\&\ge \left( 1 - \frac{3b(f_{m,p})}{c(f_{m,p})} + \frac{4}{5\pi }\cdot \frac{(1-p)^{5/2}}{c(f_{m,p})x^2}\right) _+ \\&= \left( p + \frac{4}{5\pi }\cdot \frac{(1-p)^{5/2}}{c(f_{m,p})x^2}\right) _+ = p + \frac{4}{5\pi }\cdot \frac{(1-p)^{5/2}}{c(f_{m,p})x^2} > p. \end{aligned}$$

However, \(f_{m,p}(x) \equiv p\) for \(x\ge 1\), which means that \(f_{m,p}\) cannot be a fixed point of \({\varvec{R}}_1\). We have used this fact in the proofs of Lemma 4.1 and Lemma 4.2.

Next, we show that \(\mu (f_m) = 2Q(f_m)/b(f_m)^2 = \overline{\mu }\), where \(\overline{\mu }\) is given in Theorem 4.3, and \(\mu (f),Q(f)\) are defined in the proof of this theorem. Owing to the calculations in the proof of Theorem 4.3, for \(f\in \mathbb {D}\), we have

$$\begin{aligned} Q(f) = \frac{1}{\pi ^2}\int _0^{+\infty }\int _0^{+\infty }\left( \frac{f'(x)}{x}\right) '\left( \frac{f'(y)}{y}\right) 'x^3y^3F_4(x/y)\, \textrm{d}{x}\, \textrm{d}{y}, \end{aligned}$$

and

$$\begin{aligned} b(f) = \frac{2}{3\pi }\int _0^{+\infty }\left( \frac{f'(y)}{y}\right) 'y^3\, \textrm{d}{y}. \end{aligned}$$

Note that \(f'_m(x) = -2x, x\in [0,1)\) and \(f'_m(x) = 0, x>1\). We thus have

$$\begin{aligned} \left( \frac{f'(x)}{x}\right) ' = 2\cdot \delta (x-1),\quad x\ge 0, \end{aligned}$$

where \(\delta (x)\) is the Dirac function centered at 0. It then follows that

$$\begin{aligned} Q(f_m) = \frac{4}{\pi ^2}F_4(1),\quad b(f_m) = \frac{4}{3\pi }, \end{aligned}$$

and thus

$$\begin{aligned} \mu (f_m) = \frac{2Q(f_m)}{b(f_m)^2} = \frac{9}{2}F_4(1) =: \overline{\mu }. \end{aligned}$$

Recall we have shown in the proof of Theorem 4.3 that \(Q(f)\le \overline{\mu }\) for all suitable f. This means that \(f_m\) is the maximizer of \(\mu (f)\) over the set \(\mathbb {D}\).

Appendix B: On the Hilbert Transform

We prove two useful lemmas that exploit properties the Hilbert transform.

Lemma B.1

For any suitable function \(\omega \) on \(\mathbb {R}\),

$$\begin{aligned} \frac{{\varvec{H}}(\omega )(x)-{\varvec{H}}(\omega )(0)}{x} = {\varvec{H}}\left( \frac{\omega }{x}\right) (x). \end{aligned}$$

As a result,

$$\begin{aligned} \frac{1}{\pi }\int _{\mathbb {R}}\frac{{\varvec{H}}(\omega )(x)\cdot \omega (x)}{x}\, \textrm{d}{x} = -\frac{1}{2}\big ({\varvec{H}}(\omega )(0)\big )^2. \end{aligned}$$

Proof

The first equation follows directly from the definition of the Hilbert transform on the real line. The second equation is derived from the first one as follows:

$$\begin{aligned} \frac{1}{\pi }\int _{\mathbb {R}}\frac{{\varvec{H}}(\omega )\cdot \omega }{x}\, \textrm{d}{x}&= \frac{1}{\pi }\int _{\mathbb {R}}\frac{({\varvec{H}}(\omega )-{\varvec{H}}(\omega )(0))}{x}\omega \, \textrm{d}{x} + {\varvec{H}}(\omega )(0)\cdot \frac{1}{\pi }\int _{\mathbb {R}}\frac{\omega }{x}\, \textrm{d}{x}\\&= \frac{1}{\pi }\int _{\mathbb {R}}{\varvec{H}}\left( \frac{\omega }{x}\right) \omega \, \textrm{d}{x} - \big ({\varvec{H}}(\omega )(0)\big )^2\\&= -\frac{1}{\pi }\int _{\mathbb {R}}\frac{\omega }{x}{\varvec{H}}(\omega )\, \textrm{d}{x} - \big ({\varvec{H}}(\omega )(0)\big )^2. \end{aligned}$$

Rearranging the equation above yields the desired result. \(\square \)

Lemma B.2

Given a function \(\omega \), suppose that \(\Vert x^\delta \omega \Vert _{L^{+\infty }(\mathbb {R})} = \sup _{x\in \mathbb {R}}|x|^{\delta }|\omega (x)|<+\infty \) for some \(\delta >0\). If \(\omega \in H^k_{loc}(A,B)\) for some \(A<B\) and some integer \(k\ge 0\), then \({\varvec{H}}(\omega )\in H^k_{loc}(A,B)\).

Proof

We first prove a formula for the k-th derivative of \({\varvec{H}}(\omega )\): if \(\omega \in H^k_{loc}(A,B)\), then for any \(A<a<b<B\) and any \(x\in (a,b)\),

$$\begin{aligned} {\varvec{H}}(\omega )^{(k)}(x) = {\varvec{H}}(\chi _{[a,b]}\omega ^{(k)})(x) + g_{a,b}^{(k)}(x) + \sum \limits _{j=0}^{k-1}f_{a,b,j}^{(k-j)}(x), \end{aligned}$$
(B.1)

where the summation is 0 if \(k=0\), and

$$\begin{aligned} {\varvec{H}}(\chi _{[a,b]}\omega ^{(k)})(x)= & {} \frac{1}{\pi }P.V.\int _a^b\frac{\omega ^{(k)}(y)}{x-y}\, \textrm{d}{y},\\ g_{a,b}(x):= & {} \frac{1}{\pi }\int _{-\infty }^a\frac{\omega (y)}{x-y}\, \textrm{d}{y} + \int _b^{+\infty }\frac{\omega (y)}{x-y}\, \textrm{d}{y},\\ f_{a,b,j}(x):= & {} \frac{1}{\pi }\left( \omega ^{(j)}(a)\ln |x-a| - \omega ^{(j)}(b)\ln |x-b|\right) ,\quad j=0,1,2,\dots . \end{aligned}$$

We prove this formula with induction. The base case \(k=0\) is trivial:

$$\begin{aligned} {\varvec{H}}(\omega )(x) = \frac{1}{\pi }P.V.\int _{-\infty }^{+\infty }\frac{\omega (y)}{x-y}\, \textrm{d}{y} = \frac{1}{\pi }P.V.\int _a^b\frac{\omega (y)}{x-y}\, \textrm{d}{y} + g_{a,b}(x). \end{aligned}$$

Now suppose that (B.1) is true for some integer \(k\ge 0\), we need to show that it is then also true for \(k+1\). Under the assumption that \(\omega \in H^{k+1}_{loc}(A,B)\), we can use integration by parts to rewrite the first term on the right-hand side of (B.1) as

$$\begin{aligned} {\varvec{H}}(\chi _{[a,b]}\omega ^{(k)})(x)&= \frac{1}{\pi }P.V.\int _a^b\frac{\omega ^{(k)}(y)}{x-y}\, \textrm{d}{y} \\&= -\frac{1}{\pi }\omega ^{(k)}(y)\ln |x-y|\Big |_{y=a}^{y=b} + \frac{1}{\pi }\int _a^b\omega ^{(k+1)}\ln |x-y|\, \textrm{d}{y}\\&= f_{a,b,k}(x) + \frac{1}{\pi }\int _a^b\omega ^{(k+1)}\ln |x-y|\, \textrm{d}{y}. \end{aligned}$$

Note that \(\omega ^{(k)}(a)\) and \(\omega ^{(k)}(b)\) are finite because \(\omega \in H^{k+1}_{loc}(A,B)\). It then follows from the inductive assumption that, for \(x\in (a,b)\),

$$\begin{aligned} {\varvec{H}}(\omega )^{(k+1)}(x)&= \left( {\varvec{H}}(\chi _{[a,b]}\omega ^{(k)})(x)\right) ' + \left( g_{a,b}^{(k)}(x) + \sum \limits _{j=0}^{k-1}f_{a,b,j}^{(k-j)}(x)\right) '\\&= f_{a,b,k}'(x) + \left( \frac{1}{\pi }\int _a^b\omega ^{(k+1)}\ln |x-y|\, \textrm{d}{y}\right) ' \\&\quad + \left( g_{a,b}^{(k)}(x) + \sum \limits _{j=0}^{k-1}f_{a,b,j}^{(k-j)}(x)\right) '\\&= f_{a,b,k}'(x) + \frac{1}{\pi }P.V.\int _a^b\frac{\omega ^{(k+1)}}{x-y}\, \textrm{d}{y} \\&\quad + g_{a,b}^{(k+1)}(x) + \sum \limits _{j=0}^{k-1}f_{a,b,j}^{(k+1-j)}(x)\\&= \frac{1}{\pi }P.V.\int _a^b\frac{\omega ^{(k+1)}}{x-y}\, \textrm{d}{y} + g_{a,b}^{(k+1)}(x) + \sum \limits _{j=0}^kf_{a,b,j}^{(k+1-j)}(x). \end{aligned}$$

Hence, (B.1) is also true for \(k+1\). This completes the induction.

We then use (B.1) to prove the lemma. Note that under the assumptions of the lemma, it is easy to see that \(g_{a,b}(x)\) and \(f_{a,b,j}(x), j=0,1,\dots , k-1,\) are infinitely smooth in the interior of (ab), and thus \(g_{a,b},f_{a,b,j}\in H^k_{loc}(a,b)\). As for the first term on the right-hand side of (B.1), we have

$$\begin{aligned} \left\| {\varvec{H}}(\chi _{[a,b]}\omega ^{(k)})\right\| _{L^2([a,b])}\le & {} \left\| {\varvec{H}}(\chi _{[a,b]}\omega ^{(k)})\right\| _{L^2(\mathbb {R})}\\= & {} \left\| \chi _{[a,b]}\omega ^{(k)}\right\| _{L^2(\mathbb {R})} = \Vert \omega \Vert _{\dot{H}^k([a,b])}<+\infty . \end{aligned}$$

Therefore, (B.1) implies that \({\varvec{H}}(\omega )\in H^k_{loc}(a,b)\). Since this is true for any \(A<a<b<B\), we immediately have \({\varvec{H}}(\omega )\in H^k_{loc}(A,B)\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Qin, X., Wang, X. et al. Self-Similar Finite-Time Blowups with Smooth Profiles of the Generalized Constantin–Lax–Majda Model. Arch Rational Mech Anal 248, 22 (2024). https://doi.org/10.1007/s00205-024-01971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-024-01971-3

Navigation