Skip to main content
Log in

Well-Posedness of the Dean–Kawasaki and the Nonlinear Dawson–Watanabe Equation with Correlated Noise

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove the well-posedness of the generalized Dean–Kawasaki equation driven by noise that is white in time and colored in space. The results treat diffusion coefficients that are only locally \({1}/{2}\)-Hölder continuous, including the square root. This solves several open problems, including the well-posedness of the Dean–Kawasaki equation and the nonlinear Dawson–Watanabe equation with correlated noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the introduction, we formally write \(\partial _t\rho \) and \(\dot{\xi }^F\) to denote the time-derivative of the stochastic processes \(\rho \) and \(\xi ^F\). In the remainder of the paper, we will use the probabilistic notation \(\, \textrm{d} \rho \) and \(\, \textrm{d} \xi ^F\).

References

  1. Giacomin, G., Lebowitz, J.L., Presutti, E.: Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems. In: Stochastic Partial Differential Equations: Six Perspectives. Math. Surveys Monogr., vol. 64, pp. 107–152. Amer. Math. Soc., Providence, RI 1999

  2. Dirr, N., Stamatakis, M., Zimmer, J.: Entropic and gradient flow formulations for nonlinear diffusion. J. Math. Phys. 57(8), 081505–13, 2016

    MathSciNet  ADS  Google Scholar 

  3. Quastel, J., Rezakhanlou, F., Varadhan, S.R.S.: Large deviations for the symmetric simple exclusion process in dimensions \(d\ge 3\). Probab. Theory Rel. Fields 113(1), 1–84, 1999

    Google Scholar 

  4. Benois, O., Kipnis, C., Landim, C.: Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stoch. Process. Appl. 55(1), 65–89, 1995

    MathSciNet  Google Scholar 

  5. Dirr, N., Fehrman, B., Gess, B.: Conservative stochastic PDE and fluctuations of the symmetric simple exclusion process. arXiv:2012.02126 2020

  6. Fehrman, B., Gess, B.: Non-equilibrium large deviations and parabolic-hyperbolic pde with irregular drift. arXiv:1910.11860 2019

  7. Dean, D.: Langevin equation for the density of a system of interacting Langevin processes. J. Phys. A: Math. Gen. 29(24), 613, 1996

    MathSciNet  ADS  Google Scholar 

  8. Kawasaki, K.: Stochastic model of slow dynamics in supercooled liquids and dense colloidal suspensions. Physica A: Stat. Mech. Appl. 208(1), 35–64, 1994

    MathSciNet  ADS  Google Scholar 

  9. Donev, A., Fai, T.G., Vanden-Eijnden, E.: A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s law. J. Stat. Mech. Theory Exp. 1–39, 2014, 2014

    Google Scholar 

  10. Konarovskyi, V., von Renesse, M.-K.: Modified massive Arratia flow and Wasserstein diffusion. Commun. Pure Appl. Math. 72(4), 764–800, 2019

    MathSciNet  Google Scholar 

  11. Flandoli, F.: Regularity Theory and Stochastic Flows for Parabolic SPDEs. Stochastics Monographs, vol. 9, p. 79. Gordon and Breach Science Publishers, Yverdon (1995)

    Google Scholar 

  12. Fehrman, B., Gess, B., Gvalani, R.S.: Ergodicity and random dynamical systems for conservative spdes. arXiv:2206.14789 2022

  13. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547, 1989

    MathSciNet  ADS  Google Scholar 

  14. Bénilan, P., Carrillo, J., Wittbold, P.: Renormalized entropy solutions of scalar conservation laws. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29(2), 313–327, 2000

    MathSciNet  Google Scholar 

  15. Lions, P.-L., Perthame, B., Tadmor, E.: A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7(1), 169–191, 1994

    MathSciNet  Google Scholar 

  16. Perthame, B.: Kinetic Formulation of Conservation Laws. Oxford Lecture Series in Mathematics and its Applications, vol. 21, p. 198. Oxford University Press, Oxford (2002)

    Google Scholar 

  17. Chen, G.-Q., Perthame, B.: Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(4), 645–668, 2003

    MathSciNet  ADS  Google Scholar 

  18. Ferrari, P.A., Presutti, E., Vares, M.E.: Local equilibrium for a one dimensional zero range process. Stoch. Process. Appl. 26, 31–45, 1987

    MathSciNet  Google Scholar 

  19. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, vol. 320, p. 442. Springer, Berlin (1999)

    Google Scholar 

  20. Marconi, U.M.B., Tarazona, P.: Dynamic density functional theory of fluids. J. Chem. Phys. 110(16), 8032–8044, 1999

    ADS  Google Scholar 

  21. te Vrugt, M., Löwen, H., Wittkowski, R.: Classical dynamical density functional theory: from fundamentals to applications. Adv. Phys. 69(2), 121–247, 2020

    ADS  Google Scholar 

  22. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504, 2014

    MathSciNet  ADS  Google Scholar 

  23. Mariani, M.: Large deviations principles for stochastic scalar conservation laws. Probab. Theory Rel. Fields 147(3–4), 607–648, 2010

    MathSciNet  Google Scholar 

  24. Gonçalves, P.: On the asymmetric zero-range in the rarefaction fan. J. Stat. Phys. 154(4), 1074–1095, 2014

    MathSciNet  ADS  Google Scholar 

  25. Méléard, S., Roelly, S.: Interacting branching measure processes. In: Stochastic Partial Differential Equations and Applications (Trento, 1990). Pitman Res. Notes Math. Ser., vol. 268, pp. 246–256. Longman Sci. Tech., Harlow, 1992

  26. Dareiotis, K., Gerencsér, M., Gess, B.: Entropy solutions for stochastic porous media equations. J. Differ. Equ. 266(6), 3732–3763, 2019

    MathSciNet  ADS  Google Scholar 

  27. Oelschläger, K.: Large systems of interacting particles and the porous medium equation. J. Differ. Equ. 88(2), 294–346, 1990

    MathSciNet  ADS  Google Scholar 

  28. Dareiotis, K., Gerencsér, M., Gess, B.: Porous media equations with multiplicative space-time white noise. Ann. Inst. Henri Poincaré Probab. Stat. 57(4), 2354–2371, 2021

    MathSciNet  Google Scholar 

  29. Kurtz, T.G., Xiong, J.: Particle representations for a class of nonlinear SPDEs. Stoch. Process. Appl. 83(1), 103–126, 1999

    MathSciNet  Google Scholar 

  30. Coghi, M., Gess, B.: Stochastic nonlinear Fokker–Planck equations. Nonlinear Anal. 187, 259–278, 2019

    MathSciNet  Google Scholar 

  31. Kotelenez, P.: Stochastic Ordinary and Stochastic Partial Differential Equations. Stochastic Modelling and Applied Probability, vol. 58, p. 458. Springer, New York (2008)

    Google Scholar 

  32. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625, 2006

    MathSciNet  Google Scholar 

  33. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684, 2006

    MathSciNet  Google Scholar 

  34. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260, 2007

    MathSciNet  Google Scholar 

  35. Kawasaki, K., Ohta, T.: Kinetic drumhead model of interface. i. Progress Theor. Phys. 67(1), 147–163, 1982

    ADS  Google Scholar 

  36. Katsoulakis, M.A., Kho, A.T.: Stochastic curvature flows: asymptotic derivation, level set formulation and numerical experiments. Interfaces Free Bound. 3(3), 265–290, 2001

    MathSciNet  Google Scholar 

  37. Es-Sarhir, A., von Renesse, M.-K.: Ergodicity of stochastic curve shortening flow in the plane. SIAM J. Math. Anal. 44(1), 224–244, 2012

    MathSciNet  Google Scholar 

  38. Souganidis, P.E., Yip, N.K.: Uniqueness of motion by mean curvature perturbed by stochastic noise. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(1), 1–23, 2004

    MathSciNet  ADS  Google Scholar 

  39. Dirr, N., Luckhaus, S., Novaga, M.: A stochastic selection principle in case of fattening for curvature flow. Calc. Var. Partial Differ. Equ. 13(4), 405–425, 2001

    MathSciNet  Google Scholar 

  40. Dareiotis, K., Gess, B.: Nonlinear diffusion equations with nonlinear gradient noise. Electron. J. Probab. 25, 35–43, 2020

    MathSciNet  Google Scholar 

  41. Fehrman, B., Gess, B.: Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise. Arch. Ration. Mech. Anal. 233(1), 249–322, 2019

    MathSciNet  Google Scholar 

  42. Fehrman, B., Gess, B.: Path-by-path well-posedness of nonlinear diffusion equations with multiplicative noise. J. Math. Pures Appl. 9(148), 221–266, 2021

    MathSciNet  Google Scholar 

  43. Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 326(9), 1085–1092, 1998

    MathSciNet  ADS  Google Scholar 

  44. Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations: non-smooth equations and applications. C. R. Acad. Sci. Paris Sér. I Math. 327(8), 735–741, 1998

    MathSciNet  ADS  Google Scholar 

  45. Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic pde with semilinear stochastic dependence. C. R. Acad. Sci. Paris Sér. I Math. 331(8), 617–624, 2000

    MathSciNet  ADS  Google Scholar 

  46. Lions, P.-L., Souganidis, P.E.: Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 331(10), 783–790, 2000

    MathSciNet  ADS  Google Scholar 

  47. Lions, P.-L., Souganidis, P.E.: Viscosity solutions of fully nonlinear stochastic partial differential equations. Sūrikaisekikenkyūsho Kōkyūroku 1(1287), 58–65, 2002

    MathSciNet  Google Scholar 

  48. Lions, P.-L., Perthame, B., Souganidis, P.E.: Scalar conservation laws with rough (stochastic) fluxes. Stoch. Partial Differ. Equ. Anal. Comput. 1(4), 664–686, 2013

    MathSciNet  Google Scholar 

  49. Lions, P.-L., Perthame, B., Souganidis, P.E.: Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case. Stoch. Partial Differ. Equ. Anal. Comput. 2(4), 517–538, 2014

    MathSciNet  Google Scholar 

  50. Gess, B., Souganidis, P.E.: Scalar conservation laws with multiple rough fluxes. Commun. Math. Sci. 13(6), 1569–1597, 2015

    MathSciNet  Google Scholar 

  51. Gess, B., Souganidis, P.E.: Stochastic non-isotropic degenerate parabolic–hyperbolic equations. Stoch. Process. Appl. 127(9), 2961–3004, 2017

    MathSciNet  Google Scholar 

  52. Viot, M.: Solutions faibles d’équations aux dérivées partielles non linéaires. Thèse Université Pierre et Marie Curie, Paris (1976)

    Google Scholar 

  53. Mytnik, L., Perkins, E., Sturm, A.: On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients. Ann. Probab. 34(5), 1910–1959, 2006

    MathSciNet  Google Scholar 

  54. Sanz-Solé, M., Sarrà, M.: Hölder continuity for the stochastic heat equation with spatially correlated noise. In: Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999). Progr. Probab., vol. 52, pp. 259–268. Birkhäuser, Basel, 2002

  55. Perkins, E.: Dawson–Watanabe super processes and measure-valued diffusions. École d’Été de Probabilités de Saint Flour XXIX: Lecture Notes in Math 1781, 125–324, 2002

    Google Scholar 

  56. Mytnik, L.: Weak uniqueness for the heat equation with noise. Ann. Probab. 26(3), 968–984, 1998

    MathSciNet  Google Scholar 

  57. Mytnik, L., Perkins, E.: Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: the white noise case. Probab. Theory Rel. Fields 149(1–2), 1–96, 2011

    Google Scholar 

  58. Mueller, C., Mytnik, L., Perkins, E.: Nonuniqueness for a parabolic SPDE with \(\frac{3}{4}-\epsilon \)-Hölder diffusion coefficients. Ann. Probab. 42(5), 2032–2112, 2014

    MathSciNet  Google Scholar 

  59. von Renesse, M.-K., Sturm, K.-T.: Entropic measure and Wasserstein diffusion. Ann. Probab. 37(3), 1114–1191, 2009

    MathSciNet  Google Scholar 

  60. Andres, S., von Renesse, M.-K.: Particle approximation of the Wasserstein diffusion. J. Funct. Anal. 258(11), 3879–3905, 2010

    MathSciNet  Google Scholar 

  61. Konarovskyi, V., Lehmann, T., von Renesse, M.-K.: Dean-Kawasaki dynamics: ill-posedness vs. triviality. Electron. Commun. Probab. 24, 8–9, 2019

    MathSciNet  Google Scholar 

  62. Konarovskyi, V., Lehmann, T., von Renesse, M.-K.: On Dean-Kawasaki dynamics with smooth drift potential. J. Stat. Phys. 178(3), 666–681, 2020

    MathSciNet  ADS  Google Scholar 

  63. Cornalba, F., Shardlow, T., Zimmer, J.: A regularized Dean–Kawasaki model: derivation and analysis. SIAM J. Math. Anal. 51(2), 1137–1187, 2019

    MathSciNet  Google Scholar 

  64. Cornalba, F., Shardlow, T., Zimmer, J.: From weakly interacting particles to a regularised Dean–Kawasaki model. Nonlinearity 33(2), 864–891, 2020

    MathSciNet  ADS  Google Scholar 

  65. Debussche, A., Vovelle, J.: Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259(4), 1014–1042, 2010

    MathSciNet  Google Scholar 

  66. Hofmanová, M.: Degenerate parabolic stochastic partial differential equations. Stoch. Process. Appl. 123(12), 4294–4336, 2013

    MathSciNet  Google Scholar 

  67. Debussche, A., Hofmanová, M., Vovelle, J.: Degenerate parabolic stochastic partial differential equations: quasilinear case. Ann. Probab. 44(3), 1916–1955, 2016

    MathSciNet  Google Scholar 

  68. Barbu, V., Bogachev, V.I., Da Prato, G., Röckner, M.: Weak solutions to the stochastic porous media equation via Kolmogorov equations: the degenerate case. J. Funct. Anal. 237(1), 54–75, 2006

    MathSciNet  Google Scholar 

  69. Barbu, V., Da Prato, G., Röckner, M.: Existence and uniqueness of nonnegative solutions to the stochastic porous media equation. Indiana Univ. Math. J. 57(1), 187–211, 2008

    MathSciNet  Google Scholar 

  70. Barbu, V., Da Prato, G., Röckner, M.: Some results on stochastic porous media equations. Boll. Unione Mat. Ital. (9) 1(1), 1–15, 2008

    MathSciNet  Google Scholar 

  71. Barbu, V., Da Prato, G., Röckner, M.: Existence of strong solutions for stochastic porous media equation under general monotonicity conditions. Ann. Probab. 37(2), 428–452, 2009

    MathSciNet  Google Scholar 

  72. Barbu, V., Da Prato, G., Röckner, M.: Stochastic Porous Media Equations. Lecture Notes in Mathematics, vol. 2163, p. 202. Springer, New York (2016)

    Google Scholar 

  73. Barbu, V., Röckner, M.: On a random scaled porous media equation. J. Differ. Equ. 251(9), 2494–2514, 2011

    MathSciNet  ADS  Google Scholar 

  74. Barbu, V., Röckner, M., Russo, F.: Stochastic porous media equations in \(\mathbb{R} ^d\). J. Math. Pures Appl. (9) 103(4), 1024–1052, 2015

    MathSciNet  Google Scholar 

  75. Da Prato, G., Röckner, M.: Weak solutions to stochastic porous media equations. J. Evol. Equ. 4(2), 249–271, 2004

    MathSciNet  Google Scholar 

  76. Da Prato, G., Röckner, M., Rozovskii, B.L., Wang, F.-Y.: Strong solutions of stochastic generalized porous media equations: existence, uniqueness, and ergodicity. Comm. Part. Differ. Equ. 31(1–3), 277–291, 2006

    MathSciNet  Google Scholar 

  77. Gess, B.: Strong solutions for stochastic partial differential equations of gradient type. J. Funct. Anal. 263(8), 2355–2383, 2012

    MathSciNet  Google Scholar 

  78. Kim, J.U.: On the stochastic porous medium equation. J. Differ. Equ. 220(1), 163–194, 2006

    MathSciNet  ADS  Google Scholar 

  79. Krylov, N.V., Rozovskiĭ, B.L.: The Cauchy problem for linear stochastic partial differential equations. Izv. Akad. Nauk SSSR Ser. Mat. 41(6), 1329–13471448, 1977

    MathSciNet  Google Scholar 

  80. Krylov, N.V., Rozovskiĭ, B.L.: Stochastic evolution equations. In: Stochastic Differential Equations: Theory and Applications. Interdiscip. Math. Sci., vol. 2, pp. 1–69. World Sci. Publ., Hackensack, NJ, 2007

  81. Pardoux, E.: Sur des équations aux dérivées partielles stochastiques monotones. C. R. Acad. Sci. Paris Sér. A-B 275, 101–103, 1972

    MathSciNet  Google Scholar 

  82. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905, p. 144. Springer, Berlin (2007)

    Google Scholar 

  83. Ren, J., Röckner, M., Wang, F.-Y.: Stochastic generalized porous media and fast diffusion equations. J. Differ. Equ. 238(1), 118–152, 2007

    MathSciNet  ADS  Google Scholar 

  84. Röckner, M., Wang, F.-Y.: Non-monotone stochastic generalized porous media equations. J. Differ. Equ. 245(12), 3898–3935, 2008

    MathSciNet  ADS  Google Scholar 

  85. Rozovskiĭ, B.L.: Stochastic Evolution Systems. Mathematics and its Applications (Soviet Series), vol. 35, p. 315. Kluwer Academic Publishers Group, Dordrecht (1990)

    Google Scholar 

  86. Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19, p. 749. American Mathematical Society, Providence, RI, 2010

  87. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Grundlehren der Mathematischen Wissenschaften, vol. 293. Springer, Berlin 1999

  88. Fehrman, B., Gess, B.: Well-posedness of the Dean–Kawasaki and the nonlinear Dawson–Watanabe equation with correlated noise. arXiv:2108.08858, 2022

  89. Krylov, N.V.: A relatively short proof of Itô’s formula for SPDEs and its applications. Stoch. Partial Differ. Equ. Anal. Comput. 1(1), 152–174, 2013

    MathSciNet  Google Scholar 

  90. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Rel. Fields 102(3), 367–391, 1995

    MathSciNet  Google Scholar 

  91. Aubin, J.-P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044, 1963

    MathSciNet  Google Scholar 

  92. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, p. 554. Dunod; Gauthier-Villars, Paris (1969)

  93. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Math. Pura Appl. 4(146), 65–96, 1987

    Google Scholar 

  94. Friz, P., Victoir, N.: Multidimensional Stochastic Processes as Rough Paths. Cambridge Studies in Advanced Mathematics, vol. 120, p. 656. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  95. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Rel. Fields 105(2), 143–158, 1996

    Google Scholar 

  96. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics, p. 277. Wiley, New York, 1999

Download references

Acknowledgements

The first author acknowledges financial support from the EPSRC through the EPSRC Early Career Fellowship EP/V027824/1. The second author is co-funded by the European Union (ERC, FluCo, 101088488). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Fehrman.

Additional information

Communicated by M. Hairer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehrman, B., Gess, B. Well-Posedness of the Dean–Kawasaki and the Nonlinear Dawson–Watanabe Equation with Correlated Noise. Arch Rational Mech Anal 248, 20 (2024). https://doi.org/10.1007/s00205-024-01963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-024-01963-3

Navigation