Skip to main content
Log in

On the Critical Point Regularity for Degenerate Diffusive Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate regularity estimates at interior critical points of solutions to p-degenerate elliptic equations in a heterogeneous medium. If the source term is away from zero, we obtain a quantitative non-degeneracy estimate, which implies that solutions can never be smoother than \(C^{p\prime }\) at critical points. At zero source critical points, however, we establish higher order regularity estimates, which are sharp with respect to the source vanishing rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araújo, D.J., Leitão, R., Teixeira, E.: Infinity Laplacian equation with strong absorptions. J. Funct. Anal. 270(6), 2249–2267, 2016

    Article  MathSciNet  Google Scholar 

  2. Araújo, D.J., Teixeira, E., Urbano, J.M.: A proof of the \(C^{p\prime }\)-regularity conjecture in the plane. Adv. Math. 316, 541–553, 2017

    Article  MathSciNet  Google Scholar 

  3. Araújo, D.J., Teixeira, E., Urbano, J.M.: Towards the \(C^{p\prime }\)-regularity conjecture in higher dimensions. Int. Math. Res. Not. IMRN 20, 6481–6495, 2018

    Article  Google Scholar 

  4. Baernstein II, A., Kovalev, L.: On Hölder regularity for elliptic equations of non-divergence type in the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(2), 295–317, 2005

  5. Beck, L., Mingione, G.: Lipschitz bounds and nonuniform ellipticity. Comm. Pure Appl. Math. 73(5), 944–1034, 2020

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L.: The regularity of free boundaries in higher dimensions. Acta Math. 139, 155–184, 1977

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L.: The obstacle problem revisited. J. Fourier Anal. Appl. 4, 383–402, 1998

    Article  MathSciNet  Google Scholar 

  8. Cheeger, J., Naber, A., Valtorta, D.: Critical sets of elliptic equations. Comm. Pure Appl. Math. 68(2), 173–209, 2015

    Article  MathSciNet  Google Scholar 

  9. Colombo, M., Spolaor, L., Velichkov, B.: A logarithmic epiperimetric inequality for the obstacle problem. Geom. Funct. Anal. 28(4), 1029–1061, 2018

    Article  MathSciNet  Google Scholar 

  10. De Giorgi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3, 25–43, 1957

  11. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. TMA 7, 827–850, 1983

    Article  Google Scholar 

  12. Duzaar, F., Mingione, G.:Gradient continuity estimates. Calc. Var. Partial Differ. Equ. 39(3–4), 379–418, 2010

  13. Duzaar, F., Mingione, G.: Gradient estimates via nonlinear potentials. Amer. J. Math. 133, 1093–1149, 2011

    Article  MathSciNet  Google Scholar 

  14. Evans, L.C.; A new proof of local \(C^{1,\alpha }\) regularity for solutions of certain degenerate elliptic p.d.e. J. Differ. Equ. 45(3), 356–373, 1982

  15. Figalli, A., Serra, J.: On the fine structure of the free boundary for the classical obstacle problem. Invent. Math. 215(1), 311–366, 2019

    Article  MathSciNet  ADS  Google Scholar 

  16. Figalli, A., Ros-Oton, X., Serra, J.: Generic regularity of free boundaries for the obstacle problem. Publ. Math. Inst. Hautes Études Sci. 132, 181–292, 2020

    Article  MathSciNet  Google Scholar 

  17. Figueiredo, G., Madeira, G.: Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient. J. Differ. Equ. 274, 857–875, 2021

    Article  MathSciNet  ADS  Google Scholar 

  18. Frehse, J.: On the regularity of the solution of a second order variational inequality. Boll. Un. Mat. Ital. (4) 6, 312–315, 1972

  19. Havin, M., Maz’ja, V.G.: Nonlinear potential theory. Russian Math. Surv. 27, 71–148, 1972

    MathSciNet  ADS  Google Scholar 

  20. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  21. Iwaniec, T., Manfredi, J.J.: Regularity of p-harmonic functions on the plane. Revista Matematica Iberoamericana 5, 1–19, 1989

    Article  MathSciNet  Google Scholar 

  22. Jin, T., Mazya, V., Van Schaftingen, J.: Pathological solutions to elliptic problems in divergence form with continuous coefficients. Comptes Rendus Mathematique 347, 773–778, 2009

    Article  MathSciNet  Google Scholar 

  23. Krol’, I.: On the behavior of the solutions of a quasilinear equation near null salient points of the boundary. Proc. Steklov Inst. Math. 125, 130–136, 1973

    MATH  Google Scholar 

  24. Kuusi, T., Mingione, G.: Universal potential estimates. J. Funct. Anal. 262, 4205–4269, 2012

    Article  MathSciNet  Google Scholar 

  25. Kuusi, T., Mingione, G.: Linear potentials in nonlinear potential theory. Arch. Ration. Mech. Anal. 207, 215–246, 2013

    Article  MathSciNet  Google Scholar 

  26. Kuusi, T., Mingione, G.: Vectorial nonlinear potential theory. J. Eur. Math. Soc. (JEMS) 20(4), 929–1004, 2018

    Article  MathSciNet  Google Scholar 

  27. Ladyzhenskaya, O.; Ural’tseva, N.: Linear and quasilinear elliptic equations. Leon Ehrenpreis Academic Press, New York-London xviii+495, 1968

  28. Lewis, J.: Capacitary functions in convex rings. Arch. Rational Mech. Anal. 66, 201–224, 1977

    Article  MathSciNet  ADS  Google Scholar 

  29. Lewis, J.: Smoothness of certain degenerate elliptic equations. Proc. Amer. Math. Soc. 80(2), 259–265, 1980

    Article  MathSciNet  Google Scholar 

  30. Lewis, J.: Regularity of the derivatives of solutions to certain elliptic equations. Indiana Univ. Math. J. 32, 849–858, 1983

    Article  MathSciNet  Google Scholar 

  31. Lindgren, E., Lindqvist, P.: Regularity of the \(p\)-Poisson equation in the plane. J. Anal. Math. 132, 217–228, 2017

    Article  MathSciNet  Google Scholar 

  32. Manfredi, J.J.: Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations. PhD. Thesis. University of Washington, St. Louis.

  33. Manfredi, J.J.: Regularity for minima of functionals with p-growth. J. Differ. Equ. 76, 203–212, 1988

    Article  MathSciNet  ADS  Google Scholar 

  34. Mingione, G.: Recent progress in nonlinear potential theory. European Congress of Mathematics, 501–524, Eur. Math. Soc., Zürich, 2018

  35. Moser, J.: A new proof of De Giorgis theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13, 457–468, 1960

    Article  MathSciNet  Google Scholar 

  36. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954, 1958

    Article  MathSciNet  Google Scholar 

  37. Shahgholian, H.: \(C^{1,1}\) regularity in semilinear elliptic problems. Comm. Pure Appl. Math. 56(2), 278–281, 2003

    Article  MathSciNet  Google Scholar 

  38. Teixeira, E.V.: Geometric regularity estimates for elliptic equations. Mathematical Congress of the Americas, 185–201, Contemp. Math., 656, Amer. Math. Soc., Providence, RI, 2016

  39. Teixeira, E.V.: Sharp regularity for general Poisson equations with borderline sources. J. Math. Pures Appl. (9) 99(2), 150–164, 2013

  40. Teixeira, E.V.: Regularity for quasilinear equations on degenerate singular sets. Math. Ann. 358(1–2), 241–256, 2014

    Article  MathSciNet  Google Scholar 

  41. Teixeira, E.V.: Hessian continuity at degenerate points in nonvariational elliptic problems. Int. Math. Res. Not. IMRN 16, 6893–6906, 2015

    Article  MathSciNet  Google Scholar 

  42. Teixeira, E.V.: Regularity for the fully nonlinear dead-core problem. Math. Ann. 364(3–4), 1121–1134, 2016

    Article  MathSciNet  Google Scholar 

  43. Teixeira, E.V.: Regularity theory for nonlinear diffusion processes. Notices Amer. Math. Soc. 67(4), 475–483, 2020

    Article  MathSciNet  Google Scholar 

  44. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51(1), 126–150, 1984

    Article  MathSciNet  ADS  Google Scholar 

  45. Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138, 219–240, 1977

    Article  MathSciNet  Google Scholar 

  46. Uraltseva, N.N.: Degenerate quasilinear elliptic systems. Zap. Na. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7, 184–222, 1968

  47. Weiss, G.: A homogeneity improvement approach to the obstacle problem. Invent. Math. 138, 23–50, 1999

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo V. Teixeira.

Additional information

Communicated by G. Dal Maso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, E.V. On the Critical Point Regularity for Degenerate Diffusive Equations. Arch Rational Mech Anal 244, 293–316 (2022). https://doi.org/10.1007/s00205-022-01768-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01768-2

Navigation